(2013•南開區(qū)一模)如圖,已知:△ABC內(nèi)接于⊙O,點D在OC的延長線上,∠B=∠D=30°.
(1)判斷直線AD與⊙O的位置關(guān)系,并說明理由;
(2)若AC=6,求⊙O的半徑和線段AD的長.
分析:(1)連接OA,根據(jù)圓周角定理求出∠O的度數(shù),根據(jù)三角形的內(nèi)角和定理求出∠OAD,根據(jù)切線的判定推出即可;
(2)得出等邊三角形AOC,求出OA,根據(jù)銳角三角函數(shù)的定義得出tanO=
AD
OA
,代入求出即可.
解答:(1)解:直線AD與⊙O的位置關(guān)系是相切,
理由是:
連接OA,
∵弧AC所對的圓心角是∠AOC,所對的圓周角是∠ABC,∠ABC=30°,
∴∠AOC=60°,
∵∠D=30°,
∴∠OAD=180°-30°-60°=90°,
∴OA⊥AD,
∵OA是⊙O半徑,
∴AD是⊙O切線,
即直線AD與⊙O的位置關(guān)系是相切;

(2)解:∵由(1)知:∠AOC=60°,OA=OC,
∴△AOC是等邊三角形,
∴OA=OC=AC=6,
在Rt△OAD中,tan60°=
AD
OA
=
AD
6

∴AD=6
3
,
答:⊙O半徑是6,AD長是6
3
點評:本題考查的知識點是切線的性質(zhì)和判定,銳角三角函數(shù)的定義,等邊三角形的性質(zhì)和判定,三角形的內(nèi)角和定理,圓周角定理等,主要考查學(xué)生綜合運用定理進行推理和計算的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南開區(qū)一模)北京市環(huán)保檢測中心網(wǎng)站公布的2012年3月31日的PM2.5研究性檢測部分數(shù)據(jù)如下表:
時間 0:00 4:00 8:00 12:00 16:00 20:00
PM2.5(mg/m3 0.027 0.035 0.032 0.014 0.016 0.032
則該日這6個時刻的PM2.5的眾數(shù)和中位數(shù)分別是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南開區(qū)一模)納米是一個長度單位,1納米=0.000000001米,如果把水分子看成是球形,它的直徑約為0.4納米,用科學(xué)記數(shù)法表示為4×10n米,那么n的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•南開區(qū)一模)閱讀下面材料:小明遇到這樣一個問題:如圖1,△ABO和△CBO均為等腰直角三角形,∠AOB=∠COD=90°,若△BOC的面積為1,試求以AD、BC、OC+OD的長度為三邊長的三角形的面積.小明是這樣思考的:要解決這個問題,首先應(yīng)想辦法移動這些分散的線段,構(gòu)成一個三角形,在計算其面積即可.他利用圖形變換解決了這個問題,其解題思路是延長CO到E,使得OE=CO,連接BE,可證△OBE≌△OAD,從而等到的△BCE即時以AD、BC、OC+OD的長度為三邊長的三角形(如圖2).
(I)請你回答:圖2中△BCE的面積等于
2
2

(II)請你嘗試用平移、旋轉(zhuǎn)、翻折的方法,解決下列問題:如圖3,已知ABC,分別以AB、AC、BC為邊向外作正方形ABDE、AGFC、BCHI,連接EG、FH、ID.若△ABC的面積為1,則以EG、FH、ID的長度為三邊長的三角形的面積等于
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南開區(qū)一模)解不等式組
x-3
2
<-1
x
3
+2≥-x

查看答案和解析>>

同步練習(xí)冊答案