【題目】如圖所示是某路燈燈架示意圖,其中點(diǎn)A表示電燈,AB和BC為燈架,l表示地面,已知AB=2m,BC=5.7m,∠ABC=110°,BC⊥l于點(diǎn)C,求電燈A與地面l的距離.(結(jié)果精確到0.1m.參考數(shù)據(jù):sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過(guò)點(diǎn)O作OF⊥BC于F,若BD=8cm,AE=2cm,
(1)求⊙O的半徑;
(2)求O到弦BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形的三個(gè)頂點(diǎn)、、.拋物線的解析式為.
(1)如圖一,若拋物線經(jīng)過(guò),兩點(diǎn),直接寫出點(diǎn)的坐標(biāo) ;拋物線的對(duì)稱軸為直線 ;
(2)如圖二:若拋物線經(jīng)過(guò)、兩點(diǎn),
①求拋物線的表達(dá)式.
②若點(diǎn)為線段上一動(dòng)點(diǎn),過(guò)點(diǎn)作交于點(diǎn),過(guò)點(diǎn)作于點(diǎn)交拋物線于點(diǎn).當(dāng)線段最長(zhǎng)時(shí),求點(diǎn)的坐標(biāo);
(3)若,且拋物線與矩形沒(méi)有公共點(diǎn),直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半徑為R的⊙O的弦AC=BD,AC、BD交于E,F為上一點(diǎn),連AF、BF、AB、AD,下列結(jié)論:①AE=BE;②若AC⊥BD,則AD=R;③在②的條件下,若,AB=,則BF+CE=1.其中正確的是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一條單車道的拋物線形隧道如圖所示.隧道中公路的寬度AB=8m,隧道的最高點(diǎn)C到公路的距離為6m.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求拋物線的表達(dá)式;
(2)現(xiàn)有一輛貨車的高度是4.4m,貨車的寬度是2m,為了保證安全,車頂距離隧道頂部至少0.5m,通過(guò)計(jì)算說(shuō)明這輛貨車能否安全通過(guò)這條隧道.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△EFG中,∠EFG=90°,EF=FG,且點(diǎn)E,F分別在矩形ABCD的邊AB,AD上.
(1)如圖1,當(dāng)點(diǎn)G在CD上時(shí),求證:△AEF≌△DFG;
(2)如圖2,若F是AD的中點(diǎn),FG與CD相交于點(diǎn)N,連接EN,求證:EN=AE+DN;
(3)如圖3,若AE=AD,EG,FG分別交CD于點(diǎn)M,N,求證:MG2=MNMD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,剪兩張對(duì)邊平行且寬度相同的紙條隨意交叉疊放在一起,轉(zhuǎn)動(dòng)其中一張,重合部分構(gòu)成一個(gè)四邊形,則下列結(jié)論中不一定成立的是( 。
A. ∠ABC=∠ADC,∠BAD=∠BCDB. AB=BC
C. AB=CD,AD=BCD. ∠DAB+∠BCD=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在研究反比例函數(shù)的圖象與性質(zhì)時(shí),我們對(duì)函數(shù)解析式進(jìn)行了深入分析.首先,確定自變量x的取值范圍是全體非零實(shí)數(shù),因此函數(shù)圖象會(huì)被y軸分成兩部分;其次,分析解析式,得到y隨x的變化趨勢(shì):當(dāng)x>0時(shí),隨著x值的增大,y的值減小,且逐漸接近于零,隨著x值的減小,y的值會(huì)越來(lái)越大,由此,可以大致畫出在x>0時(shí)的部分圖象,如圖1所示.利用同樣的方法,我們可以研究函數(shù)的圖象與性質(zhì).
(1)該函數(shù)自變量x的取值范圍_______________;
(2)通過(guò)分析解析式畫出部分函數(shù)圖象,如圖2所示.請(qǐng)沿此思路在圖2中完善函數(shù)圖象的草圖并標(biāo)出此函數(shù)圖象與y軸的交點(diǎn)A;(畫出網(wǎng)格區(qū)域內(nèi)的部分即可)
(3)觀察圖象,寫出該函數(shù)的一條性質(zhì): ;
(4)若關(guān)于x的方程有兩個(gè)不相等的實(shí)數(shù)根,結(jié)合圖象,直接寫出實(shí)數(shù)a的取值范圍: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為a的正方形ABCD被兩條與邊平行的線段EF、GH分割成四個(gè)小矩形,EF與GH交于點(diǎn)P,連接AF、AH、FH.
(1)如圖1,若a=1,AE=AG=,求FH的值;
(2)如圖2,若∠FAH=45°,證明:AG+AE=FH;
(3)若Rt△GBF的周長(zhǎng)l=a,求矩形EPHD的面積S與l的關(guān)系(只寫結(jié)果,不寫過(guò)程).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com