【題目】為響應香洲區(qū)全面推進書香校園建設的號召,班長小青隨機調查了若干同學一周課外閱讀的時間t(單位:小時),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(A:0<t≤7,B:7<t≤14,C:14<t≤21,D:t>21),根據(jù)圖中信息,解答下列問題:
(1)這項工作中被調查的總人數(shù)是多少?
(2)補全條形統(tǒng)計圖,并求出表示A組的扇形統(tǒng)計圖的圓心角的度數(shù);
(3)如果小青想從D組的甲、乙、丙、丁四人中先后隨機選擇兩人做讀書心得發(fā)言代表,請用列表或樹狀圖的方法求出恰好選中甲的概率.
【答案】(1)50人;(2)補全圖形見解析,表示A組的扇形統(tǒng)計圖的圓心角的度數(shù)為108°;(3).
【解析】分析:(1)、根據(jù)B的人數(shù)和百分比得出樣本容量;(2)、根據(jù)總人數(shù)求出C組的人數(shù),根據(jù)A組的人數(shù)占總人數(shù)的百分比得出扇形的圓心角度數(shù);(3)、根據(jù)題意列出樹狀圖,從而得出概率.
詳解:(1)被調查的總人數(shù)為19÷38%=50人;
(2)C組的人數(shù)為50﹣(15+19+4)=12(人),
補全圖形如下:
表示A組的扇形統(tǒng)計圖的圓心角的度數(shù)為360°×=108°;
(3)畫樹狀圖如下,
共有12個可能的結果,恰好選中甲的結果有6個, ∴P(恰好選中甲)=.
科目:初中數(shù)學 來源: 題型:
【題目】隨著科技的進步和網(wǎng)絡資源的豐富,在線學習已經(jīng)成為更多人的自主學習選擇.某校計劃為學生提供以下四類在線學習方式:在線閱讀、在線聽課、在線答題和在線討論.為了解學生需求,該校隨機對本校部分學生進行了“你對哪類在線學習方式最感興趣”的調查,并根據(jù)調查結果繪制成如下兩幅不完整的統(tǒng)計圖.
(1)求本次調查的學生總人數(shù),并補全條形統(tǒng)計圖;
(2)求扇形統(tǒng)計圖中“在線討論”對應的扇形圓心角的度數(shù);
(3)該校共有學生3000人,請你估計該校對在線閱讀最感興趣的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若拋物線L1:y=ax2+bx+c(a,b,c是常數(shù),abc≠0)與直線L2都經(jīng)過y軸上的一點P,且拋物線L1與頂點Q在直線L2上,則稱此直線L2與該拋物線L1具有“一帶一路”關系,此時,直線L2叫做拋物線L1的“帶線”,拋物線L1叫做直L2的“路線”.
(1) 若直線y=mx+1與拋物線y=x2-2x+n具有“一帶一路”關系,則m+n=_______.
(2) 若某“路線”L1的頂點在反比例函數(shù)的圖像上,它的“帶線” L2的解析式為y=2x-4,則此“路線”L的解析式為:_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)材料,解答問題
如圖,數(shù)軸上有點,對應的數(shù)分別是6,-4,4,-1,則兩點間的距離為;兩點間的距離為;兩點間的距離為;由此,若數(shù)軸上任意兩點分別表示的數(shù)是,則兩點間的距離可表示為.反之,表示有理數(shù)在數(shù)軸上的對應點之間的距離,稱之為絕對值的幾何意義.
問題應用1:
(1)如果表示-1的點和表示的點之間的距離是2,則點對應的的值為___________;
(2)方程的解____________;
(3)方程的解______________ ;
問題應用2:
如圖,若數(shù)軸上表示的點為.
(4)的幾何意義是數(shù)軸上_____________,當__________,的值最小是____________;
(5)的幾何意義是數(shù)軸上_______,的最小值是__________,此時點在數(shù)軸上應位于__________上;
(6)根據(jù)以上推理方法可求的最小值是___________,此時__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在桌面上,有若干個完全相同的小正方體堆成的一個幾何體,如圖所示.
(1)請畫出這個幾何體的三視圖.
(2)若將此幾何體的表面噴上紅漆(放在桌面上的一面不噴),則三個面上是紅色的小正方體有 個.
(3)若現(xiàn)在你的手頭還有一些相同的小正方體可添放在幾何體上,要保持主視圖和左視圖不變,則最多可以添加___個小正方體.
(4)若另一個幾何體與幾何體的主視圖和左視圖相同,而小正方體個數(shù)則比幾何體多1個,請在圖2中畫出幾何體的俯視圖中的任意兩種.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點E是邊AC的中點,連接DE,DE的延長線與邊BC相交于點F,AG∥BC,交DE于點G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,AD=4,AB=2,將矩形ABCD繞點A逆時針旋轉α(0<α<90°)得到矩形AEFG.延長CB與EF交于點H.
(1)求證:BH=EH;
(2)如圖2,當點G落在線段BC上時,求點B經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某月的月歷,圖中帶陰影的方框恰好蓋住四個數(shù),不改變帶陰影的方框的形狀大小,移動方框的位置.
(1)若帶陰影的方框蓋住的4個數(shù)中,A表示的數(shù)是x,求這4個數(shù)的和(用含x的代數(shù)式表示);
(2)若帶陰影的方框蓋住的4個數(shù)之和為82,求出A表示的數(shù);
(3)這4個數(shù)之和可能為38或112嗎?如果可能,請求出這4個數(shù),如果不可能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線AB與x軸、y軸相交于、兩點,動點C在線段OA上(不與O、A重合),將線段CB繞著點C順時針旋轉得到CD,當點D恰好落在直線AB上時,過點D作軸于點E.
(1)求證,;
(2)如圖2,將沿x軸正方向平移得,當直線經(jīng)過點D時,求點D的坐標及平移的距離;
(3)若點P在y軸上,點Q在直線AB上,是否存在以C、D、P、Q為頂點的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的Q點坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com