如圖,與∠1是同旁內(nèi)角的角有


  1. A.
    0個(gè)
  2. B.
    1個(gè)
  3. C.
    2個(gè)
  4. D.
    3個(gè)
C
分析:根據(jù)同旁內(nèi)角的定義解答.找到三條直線,看兩條直線被第三條直線所截即可.
解答:根據(jù)同旁內(nèi)角的定義,與∠1是同旁內(nèi)角的角有∠2,∠6,
故選C.
點(diǎn)評(píng):本題考查了同位角、內(nèi)錯(cuò)角、同旁內(nèi)角,解答此類題確定三線八角是關(guān)鍵,可直接從截線入手.對(duì)平面幾何中概念的理解,一定要緊扣概念中的關(guān)鍵詞語(yǔ),要做到對(duì)它們正確理解,對(duì)不同的幾何語(yǔ)言的表達(dá)要注意理解它們所包含的意義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,∠1與∠B是
同旁內(nèi)
同旁內(nèi)
角,它們是由直線
AC
AC
CB
CB
被直線
AB
AB
所截而形成.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,∠3與∠4是
鄰補(bǔ)
鄰補(bǔ)
角;∠5與∠7是
對(duì)頂
對(duì)頂
角:∠3與∠5是
內(nèi)錯(cuò)
內(nèi)錯(cuò)
角;∠4與∠8是
同位
同位
角;∠3與∠6是
同旁內(nèi)
同旁內(nèi)
角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

幾何模型:

條件:如下左圖,、是直線同旁的兩個(gè)定點(diǎn).

問(wèn)題:在直線上確定一點(diǎn),使的值最。

方法:作點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),連結(jié)于點(diǎn),則的值最小(不必證明).

模型應(yīng)用:

(1)如圖1,正方形的邊長(zhǎng)為2,的中點(diǎn),上一動(dòng)點(diǎn).連結(jié),由正方形對(duì)稱性可知,關(guān)于直線對(duì)稱.連結(jié),則的最小值是___________

(2)如圖2,的半徑為2,點(diǎn)上,,上一動(dòng)點(diǎn),求的最小值;

(3)如圖3,,內(nèi)一點(diǎn),,分別是上的動(dòng)點(diǎn),求周長(zhǎng)的最小值.

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

條件:如下左圖,、是直線同旁的兩個(gè)定點(diǎn).問(wèn)題:在直線上確定一點(diǎn),使的值最。椒ǎ鹤鼽c(diǎn)關(guān)于直線的對(duì)稱點(diǎn),連結(jié)于點(diǎn),則的值最小(不必證明).

模型應(yīng)用:

(1)如圖1,正方形的邊長(zhǎng)為2,的中點(diǎn),上一動(dòng)點(diǎn).連結(jié),由正方形對(duì)稱性可知,關(guān)于直線對(duì)稱.連結(jié),則的最小值是___________

(2)如圖2,的半徑為2,點(diǎn)上,,上一動(dòng)點(diǎn),求的最小值;

(3)如圖3,,內(nèi)一點(diǎn),,分別是上的動(dòng)點(diǎn),求周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

幾何模型:

條件:如下左圖,是直線同旁的兩個(gè)定點(diǎn).

問(wèn)題:在直線上確定一點(diǎn),使的值最小.

方法:作點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),連結(jié)于點(diǎn),則的值最。ú槐刈C明).

模型應(yīng)用:

(1)如圖1,正方形的邊長(zhǎng)為2,的中點(diǎn),上一動(dòng)點(diǎn).連結(jié),由正方形對(duì)稱性可知,關(guān)于直線對(duì)稱.連結(jié),則的最小值是___________

(2)如圖2,的半徑為2,點(diǎn)上,,上一動(dòng)點(diǎn),求的最小值;

(3)如圖3,,內(nèi)一點(diǎn),分別是上的動(dòng)點(diǎn),求周長(zhǎng)的最小值.

 


查看答案和解析>>

同步練習(xí)冊(cè)答案