如圖,直線y=
3
3
x+
3
與x軸、y分別相交與A、B兩點(diǎn),圓心P的坐標(biāo)為(1,0),圓P與y軸相切與點(diǎn)O.若將圓P沿x軸向左移動(dòng),當(dāng)圓P與該直線相交時(shí),令圓心P的橫坐標(biāo)為m,則m的取值范圍是______.
令y=0,則
3
3
x+
3
=0,
解得x=-3,
則A點(diǎn)坐標(biāo)為(-3,0);
令x=0,則y=
3

則B點(diǎn)坐標(biāo)為(0,
3
),
則tan∠BAO=
3
3
,
則∠BAO=30°,
作⊙P′與⊙P″切AB于D、E,
連接P′D、P″E,則P′D⊥AB、P″E⊥AB,
則在Rt△ADP′中,AP′=2×DP′=2,
同理可得,AP″=2,
則P′橫坐標(biāo)為-3+2=-1,P″橫坐標(biāo)為-1-4=-5,
故P橫坐標(biāo)m的取值范圍為:-5<m<-1,
故答案為:-5<m<-1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系xOy中,直線y=kx+b交x軸負(fù)半軸于A(-1,0),交y軸正半軸于B,C是x軸負(fù)半軸上一點(diǎn),且CA=
3
4
CO,△ABC的面積為6.

(1)求C點(diǎn)的坐標(biāo);
(2)求直線AB的解析式;
(3)D是第二象限內(nèi)一動(dòng)點(diǎn),且OD⊥BD,直線BE垂直射線CD于E,OF⊥OD交直線BE于F.當(dāng)線段OD,BD的長度發(fā)生改變時(shí),∠BDF的大小是否發(fā)生改變?若改變,請說明理由;若不變,請證明并求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(-3,6),點(diǎn)B,點(diǎn)C分別在x軸的負(fù)半軸和正半軸上,OB,OC的長分別是方程x2-4x+3=0的兩根(OB<OC).
(1)求點(diǎn)B,點(diǎn)C的坐標(biāo);
(2)若平面內(nèi)有M(1,-2),D為線段OC上一點(diǎn),且滿足∠DMC=∠BAC,求直線MD的解析式;
(3)在坐標(biāo)平面內(nèi)是否存在點(diǎn)Q和點(diǎn)P(點(diǎn)P在直線AC上),使以O(shè),P,C,Q為頂點(diǎn)的四邊形是正方形?若存在,請直接寫出Q點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

周末,小明騎自行車從家里出發(fā)到野外郊游.從家出發(fā)0.5小時(shí)后到達(dá)甲地,游玩一段時(shí)間后按原速前往乙地.小明離家1小時(shí)20分鐘后,媽媽駕車沿相同路線前往乙地,如圖是他們離家的路程y(km)與小明離家時(shí)間x(h)的函數(shù)圖象.已知媽媽駕車的速度是小明騎車速度的3倍.
(1)求小明騎車的速度和在甲地游玩的時(shí)間;
(2)小明從家出發(fā)多少小時(shí)后被媽媽追上?此時(shí)離家多遠(yuǎn)?
(3)若媽媽比小明早10分鐘到達(dá)乙地,求從家到乙地的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在校運(yùn)動(dòng)會(huì)男子400m比賽中,甲乙兩名運(yùn)動(dòng)員同時(shí)起跑.剛跑出80m,甲不慎摔倒,他迅速地爬起來并按原速度再次投入比賽,最終取得了優(yōu)異的成績.如圖分別表示甲、乙兩名運(yùn)動(dòng)員所跑的路程y(m)與比賽時(shí)間x(s)之間的關(guān)系(假設(shè)他們跑步時(shí)都是勻速的).根據(jù)圖象解答下列問題:
(1)圖中線段OA表示的是______(填“甲”或填“乙”)所跑的路程與比賽時(shí)間之間的關(guān)系;
(2)求甲跑步的速度;
(3)甲再次投入比賽后,在距離終點(diǎn)多遠(yuǎn)處追上乙?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

“震災(zāi)無情人有情“,玉樹地震牽動(dòng)了全國人民的心,武警某部隊(duì)接到命令,運(yùn)送一批救災(zāi)物資到災(zāi)區(qū),貨車在公路A處加滿油后,以每小時(shí)60千米的速度勻速行駛,前往與A處相距360千米的災(zāi)區(qū)B處.下表記錄的是貨車一次加滿油后油箱內(nèi)余油量y(升)與行駛時(shí)間x(時(shí))之間關(guān)系:
行駛時(shí)間x(小時(shí))01234
余油量y(升)150120906030
(1)請你用學(xué)過的函數(shù)中的一種建立x與y之間的函數(shù)關(guān)系式,說明選擇這種函數(shù)的理由;(不要求寫出自變量的取值范圍)
(2)如果貨車的行駛速度和每小時(shí)的耗油量不變,貨車行駛4小時(shí)后到達(dá)C處,C的前方12千米的D處有一加油站,那么在D處至少加多少升油,才能使貨車到達(dá)災(zāi)區(qū)B處卸去貨物后能順利返回D處加油?(根據(jù)駕駛經(jīng)驗(yàn),為保險(xiǎn)起見,油箱內(nèi)余油量應(yīng)隨時(shí)不少于10升)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線PA是一次函數(shù)y=x+1的圖象,直線PB是一次函數(shù)y=-2x+2的圖象.
(1)求A、B、P三點(diǎn)的坐標(biāo);
(2)求四邊形PQOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知A(-3,0),B(0,-4),P為直線y=-x+5在第一象限上的任意一點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D.則當(dāng)x=______時(shí),四邊形ABCD面積的最大值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直線y=-
3
3
x+2與x軸、y軸分別交于A、B兩點(diǎn),把△AOB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°后得到△AO′B′,則點(diǎn)B′的坐標(biāo)是( 。
A.(4,2
3
B.(2
3
,4)
C.(
3
,3)
D.(2
3
+2,2
3

查看答案和解析>>

同步練習(xí)冊答案