【題目】如圖,在正方形ABCD中,AC為對(duì)角線,點(diǎn)E在AB邊上,EF⊥AC于點(diǎn)F,連接EC,AF=3,△EFC的周長(zhǎng)為12,則EC的長(zhǎng)為(
A.
B.3
C.5
D.6

【答案】C
【解析】解:∵四邊形ABCD是正方形,AC為對(duì)角線, ∴∠EAF=45°,
又∵EF⊥AC,
∴∠AFE=90°,∠AEF=45°,
∴EF=AF=3,
∵△EFC的周長(zhǎng)為12,
∴FC=12﹣3﹣EC=9﹣EC,
在Rt△EFC中,EC2=EF2+FC2 ,
∴EC2=9+(9﹣EC)2
解得EC=5.
所以答案是:5.

【考點(diǎn)精析】通過(guò)靈活運(yùn)用勾股定理的概念和正方形的性質(zhì),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,則下列條件不能判定四邊形ABCD是平行四邊形的是  

A. , B. ,

C. , D. ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程:

(1)x+2(5﹣3x)=15﹣3(7﹣5x

(2)

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,E、F分別在BC、AD上,若想要使四邊形AFCE為平行四邊形,需添加一個(gè)條件,這個(gè)條件不可以是( 。

A. AF=CE B. AE=CF C. ∠BAE=∠FCD D. ∠BEA=∠FCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,經(jīng)過(guò)原點(diǎn)的拋物線y=﹣x2+2mx(m>0)與x軸的另一個(gè)交點(diǎn)為A.過(guò)點(diǎn)P(1,m)作直線PM⊥x軸于點(diǎn)M,交拋物線于點(diǎn)B,記點(diǎn)B關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C(點(diǎn)B,點(diǎn)C不重合).連接CB,CP.

(1)當(dāng)m= 時(shí),求點(diǎn)A的坐標(biāo)及BC的長(zhǎng);
(2)當(dāng)m>1時(shí),連接CA,當(dāng)CA⊥CP時(shí),求m的值;
(3)過(guò)點(diǎn)P作PE⊥PC且PE=PC,問(wèn)是否存在m,使得點(diǎn)E恰好落在坐標(biāo)軸上?若存在,請(qǐng)直接寫出所有滿足條件的點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某中學(xué)舉行中國(guó)夢(mèng)校園好聲音歌手大賽,高、初中部根據(jù)初賽成績(jī),各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽.兩個(gè)隊(duì)各選出的5名選手的決賽成績(jī)?nèi)鐖D所示.

1)根據(jù)圖示填寫下表;

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

高中部

85

100

2)結(jié)合兩隊(duì)成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)隊(duì)的決賽成績(jī)較好;

3)計(jì)算兩隊(duì)決賽成績(jī)的方差并判斷哪一個(gè)代表隊(duì)選手成績(jī)較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有正方形ABCD和一個(gè)以O(shè)為直角頂點(diǎn)的三角板,移動(dòng)三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于點(diǎn)M,N.

(1如圖1,若點(diǎn)O與點(diǎn)A重合,則OM與ON的數(shù)量關(guān)系是__________________;

(2如圖2,若點(diǎn)O正方形的中心(即兩對(duì)角線的交點(diǎn),則(1中的結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由

(3如圖3,若點(diǎn)O在正方形的內(nèi)部(含邊界,當(dāng)OM=ON時(shí),請(qǐng)?zhí)骄奎c(diǎn)O在移動(dòng)過(guò)程中可形成什么圖形?

(4如圖4是點(diǎn)O在正方形外部的一種情況.當(dāng)OM=ON時(shí),請(qǐng)你就“點(diǎn)O的位置在各種情況下(含外部移動(dòng)所形成的圖形”提出一個(gè)正確的結(jié)論.(不必說(shuō)理

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩所學(xué)校共82人參加文藝匯演(其中甲校人數(shù)多于乙校人數(shù),且甲校人數(shù)小于80人),如果兩所學(xué)校分別購(gòu)買服裝,共付款6060.

購(gòu)買服裝套數(shù)

1~40

41~80

81套及81套以上

每套服裝價(jià)格

80

70

60

(1)如果甲、乙兩所學(xué)校聯(lián)合起來(lái)購(gòu)買服裝,那么比各自購(gòu)買服裝一共可以節(jié)約多少錢?

(2)甲、乙兩所學(xué)校各有多少學(xué)生參加演出?

(3)如果乙學(xué)校單獨(dú)購(gòu)買時(shí),服裝廠每件服裝獲利60%,丙學(xué)校購(gòu)買的服裝比乙多15套,那么服裝廠賣給丙學(xué)校服裝時(shí)共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明從家騎自行車出發(fā),沿一條直路到相距2400m的郵局辦事,小明出發(fā)的同時(shí),他的爸爸以96m/min速度從郵局同一條道路步行回家,小明在郵局停留2min后沿原路以原速返回,設(shè)他們出發(fā)后經(jīng)過(guò)t min時(shí),小明與家之間的距離為s1m,小明爸爸與家之間的距離為s2m,圖中折線OABD、線段EF分別表示s1、s2t之間的函數(shù)關(guān)系的圖象

(1)求s2t之間的函數(shù)關(guān)系式;

(2)小明從家出發(fā),經(jīng)過(guò)多長(zhǎng)時(shí)間在返回途中追上爸爸?這時(shí)他們距離家還有多遠(yuǎn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案