如圖,在△ABC中,∠ACB=90°,∠B=20°.在同一平面內(nèi),將△ABC繞點(diǎn)C旋轉(zhuǎn)到△A′B′C的位置,設(shè)旋轉(zhuǎn)角為(0°<<180°).若△A′B′C中恰有一條邊與△ABC中的一條邊平行,則旋轉(zhuǎn)角的可能的度數(shù)為    .                       

 

【答案】

 20°;70°;110°;160° 

【解析】解:∵在△ABC中,∠ACB=90°,∠B=20°,

∴∠A=70°(直角三角形的兩個(gè)銳角互余);

又∵△A′B′C是由△ABC繞點(diǎn)C旋轉(zhuǎn)α得到的,

∴∠A′=∠A=70°,∠B′=∠B=20°;

①如①所示,當(dāng)AB∥A′C時(shí),∠A=∠ACA′=α=20°;

②如②所示,當(dāng)BC∥A′B′時(shí),∠B=∠B′CB=α=70°;

③如③所示,當(dāng)AB∥B′C時(shí),∠A=∠ACA′=20°,則α=∠ACB+∠ACA′=90°+20°=110°,即α=110°;

④如④所示,當(dāng)AC∥A′B′時(shí),∠B′=∠ACA′=70°,則α=∠ACB+∠ACA′=90°+70°=160°,即α=160°;

綜上所述,旋轉(zhuǎn)角α的可能的度數(shù)為20°,70°,110°或160°;

故答案是:20°,70°,110°或160°.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫(huà)出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫(huà)出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案