【題目】在一次社會調查活動中,小華收集到某“健步走運動”團隊中20名成員一天行走的步數(shù),記錄如下:

5640 6430 6520 6798 7325

8430 8215 7453 7446 6754

7638 6834 7326 6830 8648

8753 9450 9865 7290 7850

對這20個數(shù)據(jù)按組距1000進行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計圖表:

步數(shù)分組統(tǒng)計表

組別

步數(shù)分組

頻數(shù)

A

5500≤x6500

2

B

6500≤x7500

10

C

7500≤x8500

m

D

8500≤x9500

3

E

9500≤x10500

n

請根據(jù)以上信息解答下列問題:

1)求m,n的值;

2)補全頻數(shù)分布直方圖;

3)這20健步走運動團隊成員一天行走步數(shù)的中位數(shù)落在哪一組?

4)若該團隊共有120人,請估計其中一天行走步數(shù)不少于7500步的人數(shù).

【答案】(1)4,1; (2)補圖見解析;(3)B;(4)48人.

【解析】試題分析:1)根據(jù)題目中的數(shù)據(jù)即可直接確定mn的值;

2)根據(jù)(1)的結果即可直接補全直方圖;

3)根據(jù)中位數(shù)的定義直接求解;

4利用總人數(shù)乘以對應的比例即可求解.

試題解析:

(1)m=4,n=1.

故答案是:4,4;

(2)

;

(3)行走步數(shù)的中位數(shù)落在B組,

故答案是:B

(4)一天行走步數(shù)不少于7500步的人數(shù)是:120×4+3+120=48().

答:估計一天行走步數(shù)不少于7500步的人數(shù)是48人。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣2x2+8x﹣6與x軸交于點A、B,把拋物線在x軸及其上方的部分記作C1,將C1向右平移得C2,C2與x軸交于點B,D.若直線y=x+m與C1、C2共有3個不同的交點,則m的取值范圍是( 。

A. ﹣2<m< B. ﹣3<m<﹣ C. ﹣3<m<﹣2 D. ﹣3<m<﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C,D,E,F(xiàn)是平面上的6個點,則∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)是(

A.180°
B.360°
C.540°
D.720°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,高為AD,角平分線為AE,若∠B=28°,∠ACD=52°,求∠EAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一動點從原點出發(fā),按向上、向右、向下、向右的方向依次不斷地移動,每次移動一個單位,得到點,,,,則點的坐標為__________,點的坐標為__________,點是自然數(shù))的坐標為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】﹣3的絕對值是( 。
A.﹣3
B.3
C.﹣3﹣1
D.3﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半圓O的直徑AB=4,以長為2的弦PQ為直徑,向點O方向作半圓M,其中P點在弧AQ上且與A點重合,但Q點可與B點重合.

(1)弧AP的長與弧QB的長之和為定值l,請直接寫出l的值;

(2)請直接寫出點M與AB的最大距離,此時點P,A間的距離;點M與AB的最小距離,此時半圓M的弧與AB所圍成的封閉圖形面積.

(3)當半圓M與AB相切時,求弧AP的長.

(注:結果保留π,cos 35°=,cos 55°=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了節(jié)約用水,某市決定調整居民用水收費方法,規(guī)定:

如果每戶每月水不超過噸,每噸水收費元.

如果每戶每月用水超過噸,則超過部分每噸水收費元.

小紅看到這種收費方法后,想算算她家每月的水費,但是她不清楚家里每月的用水是否超過噸.

)如果小紅家每月用水噸,水費是多少?如果每月用水噸,水費是多少?

)如果字母表示小紅家每月用水的噸數(shù),那么小紅家每月的水費該如何用的代數(shù)式表示呢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若a-b=1,ab=-2,則(a+1)(b-1)=.

查看答案和解析>>

同步練習冊答案