如圖,等腰梯形MNPQ的上底長(zhǎng)為2,腰長(zhǎng)為3,一個(gè)底角為60°.正方形ABCD的邊長(zhǎng)為1,它的一邊AD在MN上,且頂點(diǎn)A與M重合.現(xiàn)將正方形ABCD在梯形的外面沿邊MN、NP、PQ進(jìn)行翻滾,翻滾到有一個(gè)頂點(diǎn)與Q重合即停止?jié)L動(dòng).

求正方形在整個(gè)翻滾過(guò)程中點(diǎn)A所經(jīng)過(guò)的路線與梯形MNPQ的三邊MN、NP、PQ所圍成圖形的面積S.


【解析】

試題分析:根據(jù)題意,可知點(diǎn)A繞D點(diǎn)翻滾,然后繞點(diǎn)C翻滾,接著繞點(diǎn)B翻滾,半徑分別為1、2、1翻轉(zhuǎn)角分別為90度、90度、150度,所以

考點(diǎn):點(diǎn)的翻轉(zhuǎn)問(wèn)題

點(diǎn)評(píng):此題看似復(fù)雜,實(shí)則考查的是學(xué)生對(duì)于題目的觀察,本題著重點(diǎn)為A點(diǎn),觀察A點(diǎn)的翻轉(zhuǎn)路徑,可以發(fā)現(xiàn)為扇形,以此為基礎(chǔ),計(jì)算A點(diǎn)翻轉(zhuǎn)路徑面積


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在平面直角坐標(biāo)系中,四邊形ABCO是梯形,其中A(4,0),B(3,),C(1,),動(dòng)點(diǎn)P從點(diǎn)A以每秒1個(gè)單位的速度向點(diǎn)O運(yùn)動(dòng),動(dòng)點(diǎn)Q也同時(shí)從點(diǎn)A沿A→B→ C→O的線路以每秒2個(gè)單位的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),點(diǎn)Q也隨之停止,設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t(秒)。求△OPQ的面積S與時(shí)間t的函數(shù)關(guān)系式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


 在平面直角坐標(biāo)系中,已知拋物線(a,c為常數(shù))的頂點(diǎn)為P,等腰直角三角形ABC的頂點(diǎn)A的坐標(biāo)為(0,﹣1),C的坐標(biāo)為(﹣4,3),直角頂點(diǎn)B在第二象限。

(1)如圖,若該拋物線過(guò)A,B兩點(diǎn),求該拋物線的函數(shù)表達(dá)式;

(2)平移(1)中的拋物線,使頂點(diǎn)P在直線AC上滑動(dòng),且與AC交于另一點(diǎn)Q,若點(diǎn)M在直線AC下方,且為平移前(1)中的拋物線上的點(diǎn),當(dāng)以M、P、Q三點(diǎn)為頂點(diǎn)的三角形是等腰直角三角形時(shí),求出所有符合條件的點(diǎn)M的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


 如圖,已知:拋物線C1,將拋物線C1向上平移m個(gè)單位(m>0)得拋物線C2,C2的頂點(diǎn)為G,與y軸交于M,點(diǎn)N是M關(guān)于x軸的對(duì)稱點(diǎn),點(diǎn)P()在直線MG上。問(wèn):當(dāng)m為何值時(shí),在拋物線C2上存在點(diǎn)Q,使得以M、N、P、Q為頂點(diǎn)的四邊形為平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,AB是⊙O的一條弦,點(diǎn)C是⊙O優(yōu)弧AB上一動(dòng)點(diǎn),且∠ACB=45°,點(diǎn)E、F分別是AC、BC的中點(diǎn),直線EF與⊙O交于G、H兩點(diǎn),若⊙O的半徑為7,則GE+FH的最大值為        

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


 如圖,矩形ABCD中,AB=4cm,AD=3 cm,點(diǎn)P從A點(diǎn)出發(fā),以5cm/s的速度,沿AC向C作勻速運(yùn)動(dòng);與此同時(shí),點(diǎn)Q也從A點(diǎn)出發(fā),以4cm/s的速度,沿射線AB作勻速運(yùn)動(dòng)。當(dāng)P運(yùn)動(dòng)到C點(diǎn)時(shí),P、Q都停止運(yùn)動(dòng)。設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為ts。

(1)當(dāng)P異于A.C時(shí),證明:以P為圓心、PQ長(zhǎng)為半徑的圓總是與邊AB相切;

(2)在整個(gè)運(yùn)動(dòng)過(guò)程中,t為怎樣的值時(shí),以P為圓心、PQ長(zhǎng)為半徑的圓與邊BC分別有1個(gè)公共點(diǎn)和2個(gè)公共點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖1,小明將一張直角梯形紙片沿虛線剪開,得到矩形和三角形兩張紙片,測(cè)得AB=5,AD=4.在進(jìn)行如下操作時(shí)遇到了下面的幾個(gè)問(wèn)題,請(qǐng)你幫助解決.

(1)將△EFG的頂點(diǎn)G移到矩形的頂點(diǎn)B處,再將三角形繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使E點(diǎn)落在CD邊上,此時(shí),EF恰好經(jīng)過(guò)點(diǎn)A(如圖2),請(qǐng)你求出AE和FG的長(zhǎng)度.

(2)在(1)的條件下,小明先將三角形的邊EG和矩形邊AB重合,然后將△EFG沿直線BC向右平移,至F點(diǎn)與B重合時(shí)停止.在平移過(guò)程中,設(shè)G點(diǎn)平移的距離為x,兩紙片重疊部分面積為y,求在平移的整個(gè)過(guò)程中,y與x的函數(shù)關(guān)系式,并求當(dāng)重疊部分面積為10時(shí),平移距離x的值(如圖3).

(3)在(2)的操作中,小明發(fā)現(xiàn)在平移過(guò)程中,雖然有時(shí)平移的距離不等,但兩紙片重疊的面積卻是相等的;而有時(shí)候平移的距離不等,兩紙片重疊部分的面積也不可能相等.請(qǐng)?zhí)剿鬟@兩種情況下重疊部分面積y的范圍(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


探究與發(fā)現(xiàn):

探究一:我們知道,三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.那么,三角形的一個(gè)內(nèi)角與它不相鄰的兩個(gè)外角的和之間存在何種數(shù)量關(guān)系呢?

已知:如圖,∠FDC與∠ECD分別為△ADC的兩個(gè)外角,

試探究∠A與∠FDC+∠ECD的數(shù)量關(guān)系.

探究二:三角形的一個(gè)內(nèi)角與另兩個(gè)內(nèi)角的平分線所夾的鈍角之間有何種關(guān)系?

已知:如圖,在△ADC中,DP、CP分別平分∠ADC和∠ACD,試探究∠P與∠A的數(shù)量關(guān)系.

探究三:若將△ADC改為任意四邊形ABCD呢?

已知:如圖,在四邊形ABCD中,DP、CP分別平分∠ADC和∠BCD,試?yán)蒙鲜鼋Y(jié)論探究∠P與∠A+∠B的數(shù)量關(guān)系.

探究四:若將上題中的四邊形ABCD改為六邊形ABCDEF呢?

請(qǐng)直接寫出∠P與∠A+∠B+∠E+∠F的數(shù)量關(guān)系: _______________________________.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


兩條直線被第三條直線所截,下列條件中,不能判斷這兩條直線平行的的是(   )

A、同位角相等   B、內(nèi)錯(cuò)角相等   C、同旁內(nèi)角互補(bǔ)   D、同旁內(nèi)角相等

查看答案和解析>>

同步練習(xí)冊(cè)答案