已知:⊙O的直徑為10cm,弦AB∥CD,且AB=6cm,CD=8cm,則AB與CD的距離________.

7cm或1cm
分析:分兩種情況考慮:當(dāng)兩條弦位于圓心O一側(cè)時(shí),如圖1所示,過(guò)O作OE⊥CD,交CD于點(diǎn)E,交AB于點(diǎn)F,連接OA,OC,由AB∥CD,得到OE⊥AB,利用垂徑定理得到E與F分別為CD與AB的中點(diǎn),在直角三角形AOF中,利用勾股定理求出OF的長(zhǎng),在三角形COE中,利用勾股定理求出OE的長(zhǎng),由OE-OF即可求出EF的長(zhǎng);當(dāng)兩條弦位于圓心O兩側(cè)時(shí),如圖2所示,同理由OE+OF求出EF的長(zhǎng)即可.
解答:解:分兩種情況考慮:
當(dāng)兩條弦位于圓心O一側(cè)時(shí),如圖1所示,
過(guò)O作OE⊥CD,交CD于點(diǎn)E,交AB于點(diǎn)F,連接OA,OC,
∵AB∥CD,∴OE⊥AB,
∴E、F分別為CD、AB的中點(diǎn),
∴CE=DE=CD=4cm,AF=BF=AB=3cm,
在Rt△AOF中,OA=5cm,AF=4cm,
根據(jù)勾股定理得:OF=3cm,
在Rt△COE中,OC=5cm,CE=3cm,
根據(jù)勾股定理得:OE═4cm,
則EF=OE-OF=4-3=1cm;
當(dāng)兩條弦位于圓心O兩側(cè)時(shí),如圖2所示,同理可得EF=4+3=7cm,
綜上,弦AB與CD的距離為7cm或1cm.
故答案為:7cm或1cm.
點(diǎn)評(píng):此題考查了垂徑定理,勾股定理,利用了分類討論的思想,熟練掌握垂徑定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)化學(xué)實(shí)驗(yàn)課上,小明用一張圓形濾紙做一個(gè)過(guò)濾器:先將圓形濾紙對(duì)折成半圓形,再對(duì)折成四分之一圓形,然后打開(kāi)得到圓錐形過(guò)濾器.若已知圓形濾紙的直徑為10cm,則濾紙重疊部分每層面積
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)E、B、C在⊙A上,已知圓A的直徑為1,BE是⊙A上的一條弦.則cos∠OBE=(  )
A、OB的長(zhǎng)B、BE的長(zhǎng)C、OE的長(zhǎng)D、OC的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:⊙O的直徑為14cm,弦AB=10cm,點(diǎn)P為AB上一點(diǎn),OP=5cm,則AP的長(zhǎng)為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

1、已知,⊙O的直徑為10cm,點(diǎn)O到直線a的距離為d:①若a與⊙O相切,則d=
5
cm;②若d=4cm,則a與⊙O有
2
個(gè)交點(diǎn);③若d=6cm,則a與⊙O的位置關(guān)系是
相離

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•長(zhǎng)寧區(qū)一模)已知圓⊙O的直徑為10,弦AB的長(zhǎng)度為8,M是弦AB上一動(dòng)點(diǎn),設(shè)線段OM=d,則d的取值范圍是
3≤d≤5
3≤d≤5

查看答案和解析>>

同步練習(xí)冊(cè)答案