已知橢圓的左焦點(diǎn)為,右頂點(diǎn)為,點(diǎn)在橢圓上,且軸, 直線軸于點(diǎn).若,則橢圓的離心率是(   )

A.         B.          C.            D.

D 【命題意圖】對(duì)于對(duì)解析幾何中與平面向量結(jié)合的考查,既體現(xiàn)了幾何與向量的交匯,也體現(xiàn)了數(shù)形結(jié)合的巧妙應(yīng)用.

【解析】對(duì)于橢圓,因?yàn)?img width=71 height=21 src='http://thumb.zyjl.cn/pic1/2010/08/25/22/2010082522330479106334.files/image058.gif' >,則   

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分13分)
如圖,已知橢圓(a>b>0)的左、右焦點(diǎn)分別為,短軸兩個(gè)端點(diǎn)為.A、B且四邊形是邊長(zhǎng)為2的正方形.

(I)求橢圓的方程;
(II)若C、D分別是橢圓長(zhǎng)軸的左、右端點(diǎn),動(dòng)點(diǎn)M滿足MD丄CD,連結(jié)CM,交橢圓于點(diǎn)P.證明為定值;
(III)在(II)的條件下,試問(wèn)X軸上是否存在異于點(diǎn)C的定點(diǎn)Q,使得以MP為直徑的圓恒過(guò)直線DP,MQ的交點(diǎn).若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分13分)
如圖,已知橢圓(a>b>0)的左、右焦點(diǎn)分別為,短軸兩個(gè)端點(diǎn)為.A、B且四邊形是邊長(zhǎng)為2的正方形.

(I)求橢圓的方程;
(II)若C、D分別是橢圓長(zhǎng)軸的左、右端點(diǎn),動(dòng)點(diǎn)M滿足MD丄CD,連結(jié)CM,交橢圓于點(diǎn)P.證明為定值;
(III)在(II)的條件下,試問(wèn)X軸上是否存在異于點(diǎn)C的定點(diǎn)Q,使得以MP為直徑的圓恒過(guò)直線DP,MQ的交點(diǎn).若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案