【題目】如圖,在ABC中,AC=BC,∠ACB=120°,點(diǎn)D是AB邊上一點(diǎn),連接CD,以CD為邊作等邊CDE.
(1)如圖1,若∠CDB=45°,AB=6,求等邊CDE的邊長(zhǎng);
(2)如圖2,點(diǎn)D在AB邊上移動(dòng)過(guò)程中,連接BE,取BE的中點(diǎn)F,連接CF,DF,過(guò)點(diǎn)D作DG⊥AC于點(diǎn)G.
①求證:CF⊥DF;
②如圖3,將CFD沿CF翻折得CF,連接B,直接寫(xiě)出的最小值.
【答案】(1);(2)①證明見(jiàn)解析;②.
【解析】
(1)過(guò)點(diǎn)C作CH⊥AB于點(diǎn) H,由等腰三角形的性質(zhì)和直角三角形的性質(zhì)可得∠A=∠B=30°,AH=BH=3,CH==,由∠CDB=45°,可得CD=CH=;
(2)①延長(zhǎng)BC到N,使CN=BC,由“SAS”可證CEN≌CDA,可得EN=AD,∠N=∠A=30°,由三角形中位線定理可得CF∥EN,CF=EN,可得∠BCF=∠N=30°,可證DG=CF,DG∥CF,即可證四邊形CFDG是矩形,可得結(jié)論;
②由“SAS”可證EFD≌BF,可得B=DE,則當(dāng)CD取最小值時(shí),有最小值,即可求解.
解:(1)如圖1,過(guò)點(diǎn)C作CH⊥AB于點(diǎn) H,
∵AC=BC,∠ACB=120°,CH⊥AB,
∴∠A=∠B=30°,AH=BH=3,
在RtBCH中,tan∠B=,
∴tan30°=
∴CH==,
∵∠CDH=45°,CH⊥AB,
∴∠CDH=∠DCH=45°,
∴DH=CH=,CD=CH=;
(2)①如圖2,延長(zhǎng)BC到N,使CN=BC,
∵AC=BC,∠ACB=120°,
∴∠A=∠ABC=30°,∠NCA=60°,
∵ECD是等邊三角形,
∴EC=CD,∠ECD=60°,
∴∠NCA=∠ECD,
∴∠NCE=∠DCA,
又∵CE=CD,AC=BC=CN,
∴CEN≌CDA(SAS),
∴EN=AD,∠N=∠A=30°,
∵BC=CN,BF=EF,
∴CF∥EN,CF=EN,
∴∠BCF=∠N=30°,
∴∠ACF=∠ACB﹣∠BCF=90°,
又∵DG⊥AC,
∴CF∥DG,
∵∠A=30°,DG⊥AC,
∴DG=AD,
∴DG=CF,
∴四邊形CFDG是平行四邊形,
又∵∠ACF=90°,
∴四邊形CFDG是矩形,
∴∠CFD=90°
∴CF⊥DF;
②如圖3,連接B,
∵將CFD沿CF翻折得CF,
∴CD=C,DF=F,∠CFD=∠CF=90°,
又∵EF=BF,∠EFD=∠BF,
∴EFD≌BF(SAS),
∴B=DE,
∴B=CD,
∵當(dāng)B取最小值時(shí),有最小值,
∴當(dāng)CD取最小值時(shí),有最小值,
∵當(dāng)CD⊥AB時(shí),CD有最小值,
∴AD=CD,AB=2AD=2CD,
∴最小值=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校教學(xué)樓與實(shí)驗(yàn)樓的水平間距米,在實(shí)驗(yàn)樓頂部點(diǎn)測(cè)得教學(xué)樓頂部點(diǎn)的仰角是,底部點(diǎn)的俯角是,則教學(xué)樓的高度是____米(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“足球運(yùn)球”是中考體育必考項(xiàng)目之一.蘭州市某學(xué)校為了解今年九年級(jí)學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級(jí)學(xué)生足球運(yùn)球的測(cè)試成績(jī)作為一個(gè)樣本,按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.(說(shuō)明:A級(jí):8分﹣10分,B級(jí):7分﹣7.9分,C級(jí):6分﹣6.9分,D級(jí):1分﹣5.9分)
根據(jù)所給信息,解答以下問(wèn)題:
(1)在扇形統(tǒng)計(jì)圖中,C對(duì)應(yīng)的扇形的圓心角是 度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)所抽取學(xué)生的足球運(yùn)球測(cè)試成績(jī)的中位數(shù)會(huì)落在 等級(jí);
(4)該校九年級(jí)有300名學(xué)生,請(qǐng)估計(jì)足球運(yùn)球測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公共汽車線路每天運(yùn)營(yíng)毛利潤(rùn)(萬(wàn)元)與乘客量(萬(wàn)人)成一次函數(shù)關(guān)系,其圖象如圖所示.目前通過(guò)監(jiān)測(cè)發(fā)現(xiàn)每天平均乘客量為0.6萬(wàn)人次,由于運(yùn)營(yíng)成本較高,這條線路處于虧損狀態(tài).(毛利潤(rùn)=票價(jià)總收入一運(yùn)營(yíng)成本)
(1)求該線路公共汽車的單程票價(jià)和每天運(yùn)營(yíng)成本分別為多少元.
(2)公交公司為了扭虧,若要使每天運(yùn)營(yíng)毛利潤(rùn)在0.2~0.4萬(wàn)元之間(包括0.2和0.4),求平均每天的乘客量的范圍.
(3)據(jù)實(shí)際情況,發(fā)現(xiàn)該線路乘客量穩(wěn)定,公交公司決定適當(dāng)提高票價(jià),當(dāng)單程票價(jià)每提高1元時(shí),每天平均乘客量相應(yīng)減少0.05萬(wàn)人次,設(shè)這條線路的單程票價(jià)提高元().當(dāng)為何值時(shí),該線路每天運(yùn)營(yíng)總利潤(rùn)最大,并求出最大的總利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,E為AD邊上一點(diǎn),BE平分∠ABC,連接CE,已知DE=6,CE=8,AE=10.
(1)求AB的長(zhǎng);
(2)求平行四邊形ABCD的面積;
(3)求cos∠AEB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,AC為一條對(duì)角線,且.延長(zhǎng)BC到點(diǎn)E,使,連接DE.
(1)判斷四邊形ACED的形狀,并說(shuō)明理由;
(2)連接AE交CD于點(diǎn)F,若,,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面中,給定線段AB和C,P兩點(diǎn),點(diǎn)C與點(diǎn)P分布在線段AB的異側(cè),滿足,則稱點(diǎn)C與點(diǎn)P是關(guān)于線段AB的關(guān)聯(lián)點(diǎn).在平面直角坐標(biāo)系xOy中,已知點(diǎn),,.
(1)在,,三個(gè)點(diǎn)中,點(diǎn)O與點(diǎn)P是關(guān)于線段AB的關(guān)聯(lián)點(diǎn)的是________;
(2)若點(diǎn)C與點(diǎn)P是關(guān)于線段OA的關(guān)聯(lián)點(diǎn),求點(diǎn)P的縱坐標(biāo)m的取值范圍;
(3)直線與x軸,y軸分別交與點(diǎn)E,F,若在線段AB上存在點(diǎn)P與點(diǎn)O是關(guān)于線段EF的關(guān)聯(lián)點(diǎn),直接寫(xiě)出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A、B、C、D、E是⊙O上五點(diǎn),⊙O的直徑BE=2,∠BCD=120°,A為的中點(diǎn),延長(zhǎng)BA到點(diǎn)P,使BA=AP,連接PE.
(1)求線段BD的長(zhǎng);
(2)求證:直線PE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:在平面直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn),且平行于直線或,叫過(guò)該點(diǎn)的“二維線”.例如,點(diǎn)的“二維線”有:,.
(1)寫(xiě)出點(diǎn)的“二維線”______;
(2)若點(diǎn)的“二維線”是,,求、的值;
(3)若反比例函數(shù)圖像上的一個(gè)點(diǎn)有一條“二維線”是,求點(diǎn)的另一條“二維線”.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com