如圖,△ABC中,AB=AC,AD是△ABC外角的平分線,已知∠BAC=∠ACD.

(1)求證:△ABC≌△CDA;
(2)若∠B=60°,求證:四邊形ABCD是菱形.
證明:(1)∵AB=AC,∴∠B=∠ACB。
∵∠FAC=∠B+∠ACB=2∠ACB,AD平分∠FAC,∴∠FAC=2∠CAD!唷螩AD=∠ACB。
∵在△ABC和△CDA中,∠BAC=∠ACD,AC=CA,∠ACB =∠CAD,
∴△ABC≌△CDA(ASA)。
(2)∵∠FAC=2∠ACB,∠FAC=2∠DAC,∴∠DAC=∠ACB!郃D∥BC。
∵∠BAC=∠ACD,∴AB∥CD。
∴四邊形ABCD是平行四邊形。
∵∠B=60°,AB=AC,∴△ABC是等邊三角形!郃B=BC。
∴平行四邊形ABCD是菱形。

試題分析:(1)求出∠B=∠ACB,根據(jù)三角形外角性質求出∠FAC=2∠ACB=2∠DAC,推出∠DAC=∠ACB,根據(jù)ASA證明△ABC和△CDA全等。
(2)推出AD∥BC,AB∥CD,得出平行四邊形ABCD,根據(jù)∠B=60°,AB=AC,得出等邊△ABC,推出AB=BC即可。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折疊,使AB落在AC上,點B與AC上的點E重合,展開后,折痕AD交BO于點F,連接DE、EF.下列結論:①圖中有4對全等三角形;②若將△DEF沿EF折疊,則點D不一定落在AC上;③BD=BF;④S四邊形DFOE=S△AOF,上述結論中正確的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

正六邊形的邊心距與邊長之比為
A.B.C.1:2D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在△ABC中,∠ACB=90°,BC的垂直平分線EF交BC于點D,交AB于點E,且BE=BF,添加一個條件,仍不能證明四邊形BECF為正方形的是
A.BC=ACB.CF⊥BFC.BD=DFD.AC=BF

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,矩形ABCD的面積為20cm2,對角線交于點O;以AB、AO為鄰邊做平行四邊形AOC1B,對角線交于點O1;以AB、AO1為鄰邊做平行四邊形AO1C2B;…;依此類推,則平行四邊形AO4C5B的面積為

A.cm2   B.cm2    C.cm2      D.cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在菱形ABCD中,∠BAD=2∠B,E,F(xiàn)分別為BC,CD的中點,連接AE、AC、AF,則圖中與△ABE全等的三角形(△ABE除外)有

A.1個         B.2個        C.3個        D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,矩形紙片ABCD中,AB=6cm,BC=8cm,現(xiàn)將其沿AE對折,使得點B落在邊AD上的點B1處,折痕與邊BC交于點E,則CE的長為【   】
A.6cmB.4cm C.2cm D.1cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,兩個完全相同的三角尺ABC和DEF在直線l上滑動.要使四邊形CBFE為菱形,還需添加的一個條件是     (寫出一個即可).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,菱形ABCD的周長為12cm,BC的垂直平分線EF經(jīng)過點A,則對角線BD的長是       。

查看答案和解析>>

同步練習冊答案