【題目】如圖,在ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AB=5,AC=6,BD=8.
(1)求證:四邊形ABCD是菱形;
(2)過點(diǎn)A作AH⊥BC于點(diǎn)H,求AH的長(zhǎng).
【答案】
(1)證明:∵在ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AB=5,AC=6,BD=8,
∴AO= AC=3,BO= BD=4,
∵AB=5,且32+42=52,
∴AO2+BO2=AB2,
∴△AOB是直角三角形,且∠AOB=90°,
∴AC⊥BD,
∴四邊形ABCD是菱形
(2)解:如圖所示:
∵四邊形ABCD是菱形,
∴BC=AB=5,
∵S△ABC= ACBO= BCAH,
∴ ×6×4= ×5×AH,
解得:AH= .
【解析】(1)利用平行四邊形的性質(zhì)結(jié)合勾股定理的逆定理得出△AOB是直角三角形,進(jìn)而得出四邊形ABCD是菱形;(2)利用菱形的面積求法得出AH的長(zhǎng).
【考點(diǎn)精析】本題主要考查了平行四邊形的性質(zhì)和菱形的判定方法的相關(guān)知識(shí)點(diǎn),需要掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分;任意一個(gè)四邊形,四邊相等成菱形;四邊形的對(duì)角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對(duì)角線若垂直,順理成章為菱形才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在5×5的正方形網(wǎng)格中,從在格點(diǎn)上的點(diǎn)A,B,C,D中任取三點(diǎn),所構(gòu)成的三角形恰好是直角三角形的個(gè)數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠工人小王某月工作的部分信息如下:
信息一:工作時(shí)間:每天上午8:00~12:00,下午14:00~18:00,每月25天;
信息二:生產(chǎn)甲、乙兩種產(chǎn)品,并且按規(guī)定每月生產(chǎn)甲產(chǎn)品的件數(shù)不少于45件.
生產(chǎn)產(chǎn)品件數(shù)與所用時(shí)間之間的關(guān)系見下表:
生產(chǎn)甲產(chǎn)品件數(shù)(件) | 生產(chǎn)乙產(chǎn)品件數(shù)(件) | 所用總時(shí)間(分) |
10 | 10 | 500 |
15 | 20 | 900 |
信息三:按件計(jì)酬,每生產(chǎn)一件甲產(chǎn)品可得6元,每生產(chǎn)一件乙產(chǎn)品可得10元.
根據(jù)以上信息,回答下列問題:
(1)小王每生產(chǎn)一件甲種產(chǎn)品,每生產(chǎn)一件乙種產(chǎn)品分別需要多少分?
(2)小王該月最多能得多少元?此時(shí)生產(chǎn)甲、乙兩種產(chǎn)品分別多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(1,0),P是第一象限內(nèi)任意一點(diǎn),連接PO,PA,若∠POA=m°,∠PAO=n°,則我們把(m°,n°)叫做點(diǎn)P 的“雙角坐標(biāo)”.例如,點(diǎn)(1,1)的“雙角坐標(biāo)”為(45°,90°).
(1)點(diǎn)( , )的“雙角坐標(biāo)”為;
(2)若點(diǎn)P到x軸的距離為 ,則m+n的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究函數(shù)y=x+ 的圖象與性質(zhì)
(1)函數(shù)y=x+ 的自變量x的取值范圍是;
(2)下列四個(gè)函數(shù)圖象中,函數(shù)y=x+ 的圖象大致是
(3)對(duì)于函數(shù)y=x+ ,求當(dāng)x>0時(shí),y的取值范圍.
請(qǐng)將下面求解此問題的過程補(bǔ)充完整:
解:∵x>0
∴y=x+
=( )2+( )2
=( ﹣ )2+
∵( ﹣ )2≥0,
∴y .
(4)若函數(shù)y= ,則y的取值范圍是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究函數(shù)y=x+ 的圖象與性質(zhì)
(1)函數(shù)y=x+ 的自變量x的取值范圍是;
(2)下列四個(gè)函數(shù)圖象中,函數(shù)y=x+ 的圖象大致是
(3)對(duì)于函數(shù)y=x+ ,求當(dāng)x>0時(shí),y的取值范圍.
請(qǐng)將下面求解此問題的過程補(bǔ)充完整:
解:∵x>0
∴y=x+
=( )2+( )2
=( ﹣ )2+
∵( ﹣ )2≥0,
∴y .
(4)若函數(shù)y= ,則y的取值范圍是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC,∠A=30°,以B為圓心,BC長(zhǎng)為半徑畫弧,分別交AC,AB于D,E兩點(diǎn),并連結(jié)BD,DE. 則∠BDE的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,一次函數(shù) 與反比例函數(shù) 的圖象在第一象限的交點(diǎn)為A(1,n).
(1)求m與n的值;
(2)設(shè)一次函數(shù)的圖象與x軸交于點(diǎn)B,連結(jié)OA,求∠BAO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)A(1,3),與x軸的一個(gè)交點(diǎn)B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論: ①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根;④拋物線與x軸的另一個(gè)交點(diǎn)是(﹣1,0);⑤當(dāng)1<x<4時(shí),有y2<y1 ,
其中正確的是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com