如圖,菱形ABCD的邊長為數(shù)學(xué)公式cm,菱形的四個頂點正好能放在間隔距離(相鄰兩條平行線間的距離)為1cm的一組平行線上,則菱形的面積為________cm2


分析:首先過點B作EF⊥AE于E,過點D作GH⊥AH于H,易得四邊形EFGH是矩形,然后勾股定理,即可求得AE,AH,CF,CG的長,又由S菱形ABCD=S矩形EFGH-S△ABE-S△BCF-S△ADH-S△CDG,即可求得答案.
解答:解:過點B作EF⊥AE于E,過點D作GH⊥AH于H,
∴EF⊥FG,GH⊥FG,
∴四邊形EFGH是矩形,
在Rt△ABE中,BE=4cm,AB=3cm,
∴AE==,
在Rt△BFC中,BF=3cm,BC=3cm,
∴FC==3,
同理:AH=3,CG=,
∴EF=7cm,EH=AE+AH=3+(cm),
∴S菱形ABCD=S矩形EFGH-S△ABE-S△BCF-S△ADH-S△CDG=7×(3+)-××4-×3×3-×3×3-××4=12+3(cm2).
故答案為:12+3
點評:此題考查了菱形的性質(zhì)以及勾股定理.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,菱形ABCD的邊長為2,∠ABC=45°,則點D的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,菱形ABCD的對角線AC=6,BD=8,∠ABD=α,則下列結(jié)論正確的是(  )
A、sinα=
4
5
B、cosα=
3
5
C、tanα=
4
3
D、tanα=
3
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,菱形ABCD的邊長為6且∠DAB=60°,以點A為原點、邊AB所在的直線為x軸且頂點D在第一象限建立平面直角坐標(biāo)系.動點P從點D出發(fā)沿折線DCB向終點B以2單位/每秒的速度運(yùn)動,同時動點Q從點A出發(fā)沿x軸負(fù)半軸以1單位/秒的速度運(yùn)動,當(dāng)點P到達(dá)終點時停止運(yùn)動,運(yùn)動時間為t,直線PQ交邊AD于點E.
(1)求出經(jīng)過A、D、C三點的拋物線解析式;
(2)是否存在時刻t使得PQ⊥DB,若存在請求出t值,若不存在,請說明理由;
(3)設(shè)AE長為y,試求y與t之間的函數(shù)關(guān)系式;
(4)若F、G為DC邊上兩點,且點DF=FG=1,試在對角線DB上找一點M、拋物線ADC對稱軸上找一點N,使得四邊形FMNG周長最小并求出周長最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,菱形ABCD的邊長為8cm,∠B=60°,P、Q同時從A點出發(fā),點P以1cm/秒的速度沿A→C→B的方向運(yùn)動,點Q以2cm/秒的速度沿A→B→C→D的方向運(yùn)動.當(dāng)點Q運(yùn)動到D點時,P、Q兩點同時停止運(yùn)動.設(shè)P、Q運(yùn)動的時間為x秒,△APQ與△ABC重疊部分的面積為ycm2(規(guī)定:點和線段是面積為0的三角形).
(1)當(dāng)x=
8
8
秒時,P和Q相遇;
(2)當(dāng)x=
(12-4
3
(12-4
3
秒時,△APQ是等腰直角三角形;
(3)當(dāng)x=
32
3
32
3
秒時,△APQ是等邊三角形;
(4)求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,菱形ABCD的周長為8cm,∠ABC:∠BAD=2:1,對角線AC、BD相交于點O,求BD及AC的長.

查看答案和解析>>

同步練習(xí)冊答案