【題目】如圖,在□ABCD中,AD2ABFAD的中點,作CEAB,垂足E在線段AB上,連接EFCF,則下列結(jié)論:(1) DCF=BCD(2)EFCF;(3)SCDFSCEF;(4)DFE3AEF.其中正確結(jié)論的個數(shù)是( )

A. 1B. 2C. 3D. 4

【答案】C

【解析】

利用平行四邊形的性質(zhì):平行四邊形的對邊相等且平行,再由全等三角形的判定得出AEF≌△DMFASA),利用全等三角形的性質(zhì)得出對應(yīng)線段之間關(guān)系進(jìn)而得出答案.

(1)FAD的中點,

AF=FD,

∵在ABCD中,AD=2AB,

AF=FD=CD,

∴∠DFC=DCF,

ADBC,

∴∠DFC=FCB,

∴∠DCF=BCF,

∴∠DCF=12BCD,故正確;

(2)延長EF,交CD延長線于M

∵四邊形ABCD是平行四邊形,

ABCD

∴∠A=MDF,

FAD中點,

AF=FD,

AEFDFM中,

∴△AEF≌△DMF(ASA),

FE=MF,∠AEF=M,

CEAB,

∴∠AEC=90°,

∴∠AEC=ECD=90°,

FM=EF,

FC=FM,故正確;

(3)EF=FM,

SEFC=SCFM,

MC>BE

SBEC<2SEFC

SBEC=2SCEF錯誤;

(4)設(shè)∠FEC=x,則∠FCE=x,

∴∠DCF=DFC=90°x

∴∠EFC=180°2x,

∴∠EFD=90°x+180°2x=270°3x

∵∠AEF=90°x,

∴∠DFE=3AEF,故正確,

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣4,3),B(﹣3,1),C(﹣1,3).

1)請按下列要求畫圖:

平移△ABC,使點A的對應(yīng)點A1的坐標(biāo)為(﹣4,﹣3),請畫出平移后的△A1B1C1;

A2B2C2與△ABC關(guān)于原點O中心對稱,畫出△A2B2C2

2)若將△A1B1C1繞點M旋轉(zhuǎn)可得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心M點的坐標(biāo)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長為6,點上的一點,連接并延長交射線于點,將沿直線翻折,點落在點處,的延長線交于點,當(dāng)時,則的長為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,,過點于點,交對角線于點,過點于點.

1)若,求四邊形的面積;(2)求證:.(溫馨提示;連接

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的點P處,折痕與BC交于點O.

(1)求證:△OCP∽△PDA;

(2)若PO:PA=1:2,則邊AB的長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)模型建立,如圖1,等腰直角三角形ABC中,∠ACB90°,CBCA,直線ED經(jīng)過點C,過AADEDD,過BBEEDE.求證:△BEC≌△CDA;

(2)模型應(yīng)用:

①已知直線yx3y軸交于A點,與x軸交于B點,將線段AB繞點B逆時針旋轉(zhuǎn)90度,得到線段BC,過點AC作直線.求直線AC的解析式;

②如圖3,矩形ABCO,O為坐標(biāo)原點,B的坐標(biāo)為(86),AC分別在坐標(biāo)軸上,P是線段BC上動點,已知點D在第一象限,且是直線y2x6上的一點,若△APD是不以A為直角頂點的等腰直角三角形,請直接寫出所有符合條件的點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的袋子中裝有僅顏色不同的10個小球,其中紅球4個,黑球6個.

(1)先從袋子中取出m(m>1)個紅球,再從袋子中隨機(jī)摸出1個球,將摸出黑球記為事件A,請完成下列表格;

(2)先從袋子中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機(jī)摸出1個黑球的概率等于,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a、b互為相反數(shù),bc互為倒數(shù),并且m的立方等于它本身。

(1)+ac.

(2)a>1,m<0,S=|2a-3b|-2|b-m|-|b+|,2a-S的值.

(3)m≠0,試討論:x為有理數(shù)時|x+m|-|x-m|是否存在最大值?若存在求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某自行車廠計劃一周生產(chǎn)1400輛自行車,平均每天生產(chǎn)200輛,由于各種原因,實際每天的生產(chǎn)量與計劃量相比有出入。

下表是某周的生產(chǎn)情況(超產(chǎn)為正,減產(chǎn)為負(fù)):

星期








增減








1)根據(jù)記錄可知前三天共生產(chǎn)了_________輛;

2)產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)__________輛;

3)該廠實行計件工資制,每輛車60元,超額完成任務(wù)每輛獎15元,少生產(chǎn)一輛扣15元,那么該廠工人這一周的工資總額是多少?

查看答案和解析>>

同步練習(xí)冊答案