25、如圖,在△ABC,AD是高線,AE、BF是角平分線,它們相交于點(diǎn)O,∠BAC=50°,∠C=62°,求∠DAC、∠BOA的度數(shù).
分析:因?yàn)锳D是高,所以∠ADC=90°,又因?yàn)椤螩=62°,所以∠DAC度數(shù)可求,因?yàn)椤螧AC=50°,∠C=62°,所以∠BAO=25°,∠ABC=62°,BF是∠ABC的角平分線,則∠ABO=31°,故∠BOA的度數(shù)可求.
解答:解:∵AD⊥BC,
∴∠ADC=90°
∵∠C=62°,
∴∠DAC=180°-90°-62°=28°,
∵∠BAC=50°,∠C=62°,
∴∠BAO=25°,∠ABC=62°,
∵BF是∠ABC的角平分線,
∴∠ABO=31°,
∴∠BOA=180°-∠BAO-∠ABO=180°-25°-31°=124°.
點(diǎn)評:本題考查了同學(xué)們利用角平分線的性質(zhì)解決問題的能力,有利于培養(yǎng)同學(xué)們的發(fā)散思維能力,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠C=90°,∠A=30°,BC=1,將另外一個(gè)含30°角的△EDF的30°角精英家教網(wǎng)的頂點(diǎn)D放在AB邊上,E、F分別在AC、BC上,當(dāng)點(diǎn)D在AB邊上移動(dòng)時(shí),DE始終與AB垂直.
(1)設(shè)AD=x,CF=y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量的取值范圍;
(2)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在△ABC中,AB=AC,AE是角平分線,BM平分∠ABC交AE于點(diǎn)M,經(jīng)過B,M兩點(diǎn)的⊙O交BC于點(diǎn)G,交AB于點(diǎn)精英家教網(wǎng)F,F(xiàn)B恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當(dāng)BC=4,AC=6,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,在△ABC中,D是BC上的一點(diǎn),∠C=62°,∠CAD=32°,則∠ADB=
94
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,BE平分∠ABC,CF平分∠ACB,CF,BE交于點(diǎn)P,AC=4cm,BC=3cm,AB=5cm,則△CPB的面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,CD是高,CE為∠ACB的平分線.若AC=15,BC=20,CD=12,EF∥AC,則∠CEF的大小為
 

查看答案和解析>>

同步練習(xí)冊答案