14、如圖,O是等邊△ABC內(nèi)一點(diǎn),將△AOB繞A點(diǎn)逆時(shí)針旋轉(zhuǎn),使得B,O兩點(diǎn)的對(duì)應(yīng)分別為C,D,則旋轉(zhuǎn)角為
60
度,圖中除△ABC外,還有等邊三形是△
AOD
分析:根據(jù)旋轉(zhuǎn)的性質(zhì)及全等三角形的性質(zhì)作答.
解答:解:∵將△AOB繞A點(diǎn)逆時(shí)針旋轉(zhuǎn),使得B,O兩點(diǎn)的對(duì)應(yīng)分別為C,D,
∴△AOB≌△ADC,
∴OA=OD,∠BAO=∠DAC,
∴∠BAO+∠OAC=∠DAC+∠OAC=∠BAC=60°,
即∠OAD=60°,
所以旋轉(zhuǎn)角為60°.
∵OA=OD,∠OAD=60°,
∴△AOD為等邊三角形.
點(diǎn)評(píng):此題主要考查了圖形旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)變化前后,對(duì)應(yīng)線段、對(duì)應(yīng)角分別相等,圖形的大小、形狀都不改變.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC是等邊三角形,AB=4cm,則BC邊上的高AD等于
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,點(diǎn)D是線段BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B、C重合),△ADE是以AD為邊的等邊三角形,過(guò)點(diǎn)E作BC的平行線,分別交AB、AC于點(diǎn)F、G,連接BE.
(1)若△ABC的面積是1,則△ADE的最小面積為
3
4
3
4
;
(2)求證:△AEB≌ADC;
(3)探究四邊形BCGE是怎樣特殊的四邊形?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,CE是外角平分線,點(diǎn)D在AC上,連結(jié)BD并延長(zhǎng)與CE交于點(diǎn)E.
(1)直接寫(xiě)出∠ECF的度數(shù)等于
60
60
°;
(2)求證:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,P為△ABC內(nèi)任意一點(diǎn),PE∥AB,PF∥AC.那么,△PEF是什么三角形?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,D是AC的中點(diǎn),F(xiàn)為邊AB上一動(dòng)點(diǎn),AF=nBF,E為直線BC上一點(diǎn),且∠EDF=120°.
 
(1)如圖1,當(dāng)n=2時(shí),求
CE
CD
=
1
3
1
3

(2)如圖2,當(dāng)n=
1
3
時(shí),求證:CD=2CE;
(3)如圖3,過(guò)點(diǎn)D作DM⊥BC于M,當(dāng)
n=3
n=3
時(shí),C點(diǎn)為線段EM的中點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案