如圖1,在平面直角坐標(biāo)系xOy中,直線MN分別與x軸正半軸、y軸正半軸交于點M、N,且OM=6cm,∠OMN=30°,等邊△ABC的頂點B與原點O重合,BC邊落在x軸的正半軸上,點A恰好落在線段MN上,如圖2,將等邊△ABC從圖1的位置沿x軸正方向以1cm/s的速度平移,邊AB、AC分別與線段MN交于點E、F,在△ABC平移的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿折線B→A→C運動,當(dāng)點P達(dá)到點C時,點P停止運動,△ABC也隨之停止平移.設(shè)△ABC平移時間為t(s),△PEF的面積為S(cm2).
(1)求等邊△ABC的邊長;
(2)當(dāng)點P在線段BA上運動時,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)點P沿折線B→A→C運動的過程中,是否在某一時刻,使△PEF為等腰三角形?若存在,求出此時t值;若不存在,請說明理由.

【答案】分析:(1)根據(jù),∠OMN=30°和△ABC為等邊三角形,求證△OAM為直角三角形,然后即可得出答案.
(2)根據(jù)OM=6cm,∠OMN=30°,利用勾股定理求出MN和ON的長,再根據(jù)△OMN∽△BEM,利用其對應(yīng)邊成比例求出BE、PE,然后利用三角形面積公式即可求得答案.
(3)△PEF為等腰三角形,求出t的值,如果在0<t<3這個范圍內(nèi)就存在,否則就不存在.
解答:解:(1)∵直線MN分別與x軸正半軸、y軸正半軸交于點M、N,OM=6cm,∠OMN=30°,
∴∠ONM=60°,
∵△ABC為等邊三角形
∴∠AOC=60°,∠NOA=30°
∴OA⊥MN,即△OAM為直角三角形,
∴OA=OM=×6=3.

(2)∵OM=6cm,∠OMN=30°,
∴ON=2,MN=4
∵△OMN∽△BEM,
=,
=,
BE=
當(dāng)點P在BE上時,
PE=BE-PB=-2t=
∵∠A=60°,∠AFE=30°,
∴EF=AE=(3-BE)=(3-)=t,
∴△PEF的面積S=×EF×PE=×,
即S==-(0<t<);
當(dāng)點P在AE上時,PE=PB-BE=2t-=
∵∠A=60°,∠AFE=30°,
∴EF=AE=(3-BE)=(3-)=t,
∴△PEF的面積S=×EF×PE=×
即S==<t≤3);

(3)存在,有三種情況:
①當(dāng)點P在線段AB上時,
點P在AB上運動的時間為s,
∵△PEF為等腰三角形,∠PEF=90°,
∴PE=EF,
∵∠A=60°,∠AFE=30°,
∴EF=AE=(3-BE)=(3-)=t,
=t或=t,
解得t=(故舍去),
②當(dāng)點P在AF上時,
若PE=PF時,點P為EF的垂直平分線與AC的交點,
此時P為直角三角形PEF斜邊AF的中點,
∴PF=AP=2t-3,
∵點P從△ABC的頂點B出發(fā),以2cm/s的速度沿折線B→A→C運動,
∴0<t<3,
在直角三角形中,cos30°===,
解得:t=2,
若FE=FP,
AF===t,
則t-(2t-3)=t,
解得:t=12-6;
③當(dāng)PE=EF,P在AE上時無解,
綜上,存在t值為或12-6或2時,△PEF為等腰三角形.
點評:此題涉及到含30度角的直角三角形、三角形的面積,相似三角形的判定與性質(zhì),勾股定理等知識點,綜合性強(qiáng),難度較大,尤其是動點問題,給此題增加了一定的難度,因此此題屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、在數(shù)學(xué)上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標(biāo)系,這是由法國數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標(biāo),y叫做點M的縱坐標(biāo),有序數(shù)對(x,y)叫做M點的坐標(biāo),如圖甲,點M的坐標(biāo)記作(2,3),(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標(biāo),記作
(2,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,將一塊腰長為2
2
cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點C的坐標(biāo)為(-3,0).
(1)點A的坐標(biāo)為
(-3,2
2
(-3,2
2
,點B的坐為
(-3-2
2
,0)
(-3-2
2
,0)
;
(2)求以原點O為頂點且過點A的拋物線的解析式;
(3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時間為多少秒時,三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步輕松練習(xí) 八年級 數(shù)學(xué) 上 題型:059

學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

(1)按照這種規(guī)定填寫下表:

(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標(biāo),n作為橫坐標(biāo),在如圖所示的平面直角坐標(biāo)系中找出相應(yīng)各點.

(3)請你猜一猜上述各點會在某一個函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當(dāng)n=10時,s的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京海淀區(qū)九年級第一學(xué)期期中測評數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在研究中心對稱問題時發(fā)現(xiàn):

如圖1,當(dāng)點為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點再繞著點旋轉(zhuǎn)180°得到點,這時點與點重合.

如圖2,當(dāng)點為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,小明發(fā)現(xiàn)P、兩點關(guān)于點中心對稱.

(1)請在圖2中畫出點, 小明在證明P、兩點關(guān)于點中心對稱時,除了說明P、三點共線之外,還需證明;

(2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點. 繼續(xù)如此操作若干次得到點,則點的坐標(biāo)為(),點的坐為.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在數(shù)學(xué)上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標(biāo)系,這是由法國數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標(biāo),y叫做點M的縱坐標(biāo),有序數(shù)對(x,y)叫做M點的坐標(biāo),如圖甲,點M的坐標(biāo)記作(2,3),
(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標(biāo),記作______.

查看答案和解析>>

同步練習(xí)冊答案