已知:如圖,在矩形中,是對角線.點為矩形外一點且滿足,.于點,連接,過點.

(1)若,求矩形的面積;

(2)若,求證:.

 

【答案】

(1)3(2)證明見解析

【解析】(1)∵AP⊥CP且AP=CP

        ∴△APC為等腰直角三角形

        ∵AP=

        ∴AC=.................1分

        ∵AB=BC

        ∴設AB=x,BC=3x

        ∴在Rt△ABC中

        x2+(3x)2=10

          10x2=10

           x=1.................3分

        ∴.................4分

     (2)延長AP,CD交于Q

          ∵∠1+∠CND=∠2+∠PNA=900

          且∠CND=∠ANP

          ∴∠1=∠2

         又∠3+∠5=∠4+∠5=900

          ∴∠3=∠4

         又∵AP=CP

          ∴△APM≌△CPD

          ∴DP=PM

         又∵CD=PM

          ∴CD=PD

          ∴∠1=∠3

          ∠1+∠Q=∠3+∠6=90°

          ∵∠1=∠3

          ∴∠Q=∠6

          ∴DQ=DP=CD

          ∴D為CQ中點

         又∵AD⊥CQ

          ∴AC=AQ=AP+PQ

         又∵∠1=∠2

          ∠APN=∠CPQ=900

          AP=CP   ∴△APN≌△CPQ

∴PQ=PN

          ∴AC=AP+PQ=AP+PN.................10分

(1)由已知條件知△APC為等腰直角三角形,即可求得AC的長,再利用勾股定理求得AB,BC的長,從而求得矩形ABCD的面積

(2)延長AP,CD交于Q,通過角之間的等量關系,求得△APN≌△CPQ,得出PQ=PN,從而求得結論

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,在矩形中,點在對角線上,以的長為半徑的⊙

,分別交于點E、點F,且∠=∠

(1)判斷直線與⊙的位置關系,并證明你的結論;

(2)若,,求⊙的半徑.

 

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在矩形中,點在對角線上,以的長為半徑的⊙
分別交于點E、點F,且∠=∠
(1)判斷直線與⊙的位置關系,并證明你的結論;
(2)若,,求⊙的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:2011屆北京市石景山區(qū)初中畢業(yè)暨中考一模數(shù)學試題 題型:解答題

已知:如圖,在矩形中,點在對角線上,以的長為半徑的⊙,分別交于點E、點F,且∠=∠
(1)判斷直線與⊙的位置關系,并證明你的結論;
(2)若,,求⊙的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年北京市順義區(qū)初三一模數(shù)學試題 題型:解答題

已知:如圖,在矩形中,點在對角線上,以的長為半徑的⊙,分別交于點E、點F,且∠=∠

(1)判斷直線與⊙的位置關系,并證明你的結論;

(2)若,,求⊙的半徑.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年北京市考數(shù)學一模試卷 題型:解答題

已知:如圖,在矩形中,點在對角線上,以的長為半徑的⊙

,分別交于點E、點F,且∠=∠

(1)判斷直線與⊙的位置關系,并證明你的結論;

(2)若,,求⊙的半徑.

 

 

查看答案和解析>>

同步練習冊答案