【題目】如圖,已知Rt△ABC 中,∠ACB=90°,BC=2,AC=3,以點(diǎn)C為圓心、CB為半徑的圓交AB于點(diǎn)D,過點(diǎn)A作AE∥CD,交BC延長線于點(diǎn)E.
(1)求CE的長;
(2)P是 CE延長線上一點(diǎn),直線AP、CD交于點(diǎn)Q.
①如果△ACQ ∽△CPQ,求CP的長;
②如果以點(diǎn)A為圓心,AQ為半徑的圓與⊙C相切,求CP的長.
【答案】(1)CE=;(2)①;②
【解析】分析:(1)由平行線分線段成比例定理得:.再由BC=DC,得到BE=AE.設(shè)CE=x,則AE=BE=x+2.在Rt△ACE中,由勾股定理即可得出結(jié)論.
(2)①由△ACQ ∽△CPQ,得到∠ACQ=∠P.再由平行線的性質(zhì)得到∠ACQ=∠CAE,則∠CAE=∠P,即可證明△ACE ∽△PCA,由相似△的性質(zhì)即可得到結(jié)論.
②設(shè)CP=t,則 .在Rt△ACP中,由勾股定理得: .
再由平行線分線段成比例定理得,可求出.然后分兩種情況討論:①若兩圓外切,則,②若兩圓內(nèi)切,則,解方程即可.
詳解:(1)∵AE∥CD,∴.∵BC=DC,∴BE=AE.
設(shè)CE=x,則AE=BE=x+2.
∵ ∠ACB=90°,∴ ,即,∴,即.
(2)①∵△ACQ ∽△CPQ,∠QAC>∠P,∴∠ACQ=∠P.
又∵AE∥CD,∴∠ACQ=∠CAE,∴∠CAE=∠P,
∴△ACE ∽△PCA,
∴,
即,
∴ .
②設(shè)CP=t,則 .
∵∠ACB=90°,∴ .
∵AE∥CD,∴,即,∴.
若兩圓外切,那么,此時方程無實(shí)數(shù)解.
若兩圓內(nèi)切,那么,∴ ,解得.
又∵,∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD//BC,AB=DC=5,AD=1,BC=9,點(diǎn)P為邊BC上一動點(diǎn),作PH⊥DC,垂足H在邊DC上,以點(diǎn)P為圓心PH為半徑畫圓,交射線PB于點(diǎn)E.
(1)當(dāng)圓P過點(diǎn)A時,求圓P的半徑;
(2)分別聯(lián)結(jié)EH和EA,當(dāng)△ABE∽△CEH時,以點(diǎn)B為圓心,r為半徑的圓B與圓P相交,試求圓B的半徑r的取值范圍;
(3)將劣弧沿直線EH翻折交BC于點(diǎn)F,試通過計(jì)算說明線段EH和EF的比值為定值,并求出此定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線EF交BC于點(diǎn)D,交AB于點(diǎn)E,且BE=BF,添加一個條件,仍不能證明四邊形BECF為正方形的是
A. BC=AC B. CF⊥BF C. BD=DF D. AC=BF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長線于點(diǎn)F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形ABCD中,AB∥CD,∠D=90°,BE平分∠ABC,交CD于點(diǎn)E,F(xiàn)是AB的中點(diǎn),聯(lián)結(jié)AE、EF,且AE⊥BE.
求證:(1)四邊形BCEF是菱形;
(2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鹿山廣場元旦期間搞促銷活動,如圖.
(1)小哲在促銷活動時兩次購物分別用了135元和481元.
①若小哲購物時沒有促銷活動,則他共需付多少錢?
②若你需購這些同樣的物品,請問還有更便宜的購物方案嗎?若有,請說出購物方案,并算出共需付多少錢;若沒有,則說明理由.
(2)若小明購了原價為a元的物品,小紅購了原價為b元的物品,且a<b,但最后小明所付的錢反而比小紅多.
①你列舉一對a,b的值;
②求符合條件的整數(shù)a,b共有幾對?(直接答案即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若線段上的一個點(diǎn)把這條線段分成1:2的兩條線段,則稱這個點(diǎn)是這條線段的三等分點(diǎn).如圖1,點(diǎn)C在線段AB上,且AC:CB=1:2,則點(diǎn)C是線段AB的一個三等分點(diǎn),顯然,一條線段的三等分點(diǎn)有兩個.
(1)已知:如圖2,DE=15cm,點(diǎn)P是DE的三等分點(diǎn),求DP的長.
(2)已知,線段AB=15cm,如圖3,點(diǎn)P從點(diǎn)A出發(fā)以每秒1cm的速度在射線AB上向點(diǎn)B方向運(yùn)動;點(diǎn)Q從點(diǎn)B出發(fā),先向點(diǎn)A方向運(yùn)動,當(dāng)與點(diǎn)P重合后立馬改變方向與點(diǎn)P同向而行且速度始終為每秒2cm,設(shè)運(yùn)動時間為t秒.
①若點(diǎn)P點(diǎn)Q同時出發(fā),且當(dāng)點(diǎn)P與點(diǎn)Q重合時,求t的值.
②若點(diǎn)P點(diǎn)Q同時出發(fā),且當(dāng)點(diǎn)P是線段AQ的三等分點(diǎn)時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年的 “十一”黃金周是天的長假,某風(fēng)景區(qū)在天假期中每天旅游人數(shù)變化如表(正號表示人數(shù)比前一天多,符號表示比前一天少)
日期 | 日 | 日 | 日 | 日 | 日 | 日 | 日 | 日 |
人數(shù)變化單位:萬人 |
(1)若月日的游客人數(shù)為萬人,則月日的旅客人數(shù)為_________萬人;
(2)八天中旅客人數(shù)最多的一天比最少的一天多_______萬人
(3)如果每萬人帶來的經(jīng)濟(jì)收入約為萬元,則黃金周八天的旅游總收入約為多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017浙江省湖州市,第23題,10分)湖州素有魚米之鄉(xiāng)之稱,某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢,一次性收購了20000kg淡水魚,計(jì)劃養(yǎng)殖一段時間后再出售.已知每天放養(yǎng)的費(fèi)用相同,放養(yǎng)10天的總成本為30.4萬元;放養(yǎng)20天的總成本為30.8萬元(總成本=放養(yǎng)總費(fèi)用+收購成本).
(1)設(shè)每天的放養(yǎng)費(fèi)用是a萬元,收購成本為b萬元,求a和b的值;
(2)設(shè)這批淡水魚放養(yǎng)t天后的質(zhì)量為m(kg),銷售單價為y元/kg.根據(jù)以往經(jīng)驗(yàn)可知:m與t的函數(shù)關(guān)系為;y與t的函數(shù)關(guān)系如圖所示.
①分別求出當(dāng)0≤t≤50和50<t≤100時,y與t的函數(shù)關(guān)系式;
②設(shè)將這批淡水魚放養(yǎng)t天后一次性出售所得利潤為W元,求當(dāng)t為何值時,W最大?并求出最大值.(利潤=銷售總額﹣總成本)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com