(10分)如圖,四邊形ABCD中,AB∥CD,AC平分∠BAD ,CE∥AD交AB于點(diǎn)E。

小題1:(1)判斷:四邊形AECD是什么形狀?并給出理由。
小題2:(2)若點(diǎn)E是AB的中點(diǎn),是判斷△ABC的形狀,并給出理由。

小題1:(1)菱形
小題2:(2)直角三角形
(1)∵AB∥CD,AD∥CE
∴AECD為平行四邊形,∠ACD=∠CAE
又∵AC平分∠BAD得到∠CAD=∠CAE
∴∠ACD=∠CAD ∴AD=DC
又∵AECD為平行四邊形
∴AECD為菱形
(2)E為AB中點(diǎn)則有AE=EB=EC
∴∠ECA=∠CAE,∠BCE=∠CBE
又∠ECA+∠CAE+∠BCE+∠CBE=180°
∴∠ECA+∠BCE=90°
∴△ABC為直角三角形
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,網(wǎng)絡(luò)中每個(gè)小正方形的邊長(zhǎng)為1,點(diǎn)的坐標(biāo)為

小題1:畫(huà)出直角坐標(biāo)系(要求標(biāo)出軸,軸和原點(diǎn))并寫(xiě)出點(diǎn)的坐標(biāo);
小題2:以為基本圖形,利用軸對(duì)稱或旋轉(zhuǎn)或平移設(shè)計(jì)一個(gè)圖案,說(shuō)明你的創(chuàng)意

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCD中,AB∥CD,AC平分∠BAD ,CE∥AD交AB于點(diǎn)E。

小題1:判斷:四邊形AECD是什么形狀?并給出理由。
小題2:若點(diǎn)E是AB的中點(diǎn),是判斷△ABC的形狀,并給出理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在菱形ABCD中,AB=2cm,∠BAD=60°,E為CD邊中點(diǎn),點(diǎn)P從點(diǎn)A開(kāi)始沿AC方向以每秒cm的速度運(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)D出發(fā)沿DB方向以每秒1cm的速度運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),P,Q同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為x秒.

小題1:當(dāng)點(diǎn)P在線段AO上運(yùn)動(dòng)時(shí).
①請(qǐng)用含x的代數(shù)式表示OP的長(zhǎng)度;
②若記四邊形PBEQ的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(不要求寫(xiě)出自變量的取值范圍)
小題2:顯然,當(dāng)x=0時(shí),四邊形PBEQ即梯形ABED,請(qǐng)問(wèn),當(dāng)P在線段AC的其他位置時(shí),以P,B,E,Q為頂點(diǎn)的四邊形能否成為梯形?若能,求出所有滿足條件的x的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在梯形ABCD中,ADBC,EBC上一點(diǎn),DEAB,AD的長(zhǎng)為1,BC的長(zhǎng)為2,則CE的長(zhǎng)為        .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題8分)在等腰梯形ABCD中,ABDC,AD=BC=5,DC=7,AB=13,點(diǎn)P從點(diǎn)A出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度沿ADDC向終點(diǎn)C運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度沿BA向終點(diǎn)A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
⑴當(dāng)t為何值時(shí),四邊形PQBC為平行四邊形時(shí)?
⑵在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)t為何值時(shí),以點(diǎn)C、PQ為頂點(diǎn)的三角形是直角三角形?
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

.如圖,矩形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,AE⊥BD,垂足為E,則∠AOB與∠BAE的關(guān)系是
A.∠AOB=∠BAE+60°   B.∠AOB=2∠BAE   C.∠AOB+∠BAE=180°  
D.無(wú)固定大小關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,四邊形ABCD中,AD=BC,E、F、G分別是AB、CD、AC的中點(diǎn),若∠DAC=20°,∠ACB=66°,則∠FEG等于(    )

A、23°          B、41°           C、46°             D、47°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如果一條直線把一個(gè)平面圖形的面積分成相等的兩部分,我們把這條直線稱為這個(gè)平面圖形的一條面積等分線.如,平行四邊形的一條對(duì)角線所在的直線就是平行四邊形的一條面積等分線.
(1)三角形的中線、高線、角平分線分別所在的直線一定是三角形的面積等分線的是_______;
(2)如圖1,梯形ABCD中,ABDC,如果延長(zhǎng)DCE,使CEAB,連接AE,那么有S梯形ABCD SADE.請(qǐng)你給出這個(gè)結(jié)論成立的理由,并過(guò)點(diǎn)A作出梯形ABCD的面積等分線(不寫(xiě)作法,保留作圖痕跡);
(3)如圖2,四邊形ABCD中,ABCD不平行,SADCSABC,過(guò)點(diǎn)A能否作出四邊形ABCD的面積等分線?若能,請(qǐng)畫(huà)出面積等分線,并給出說(shuō)明;若不能,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案