如圖,在直角坐標系中,ON為過原點的一條直線,點E、F為x、y軸上的任意兩點,P為精英家教網(wǎng)直線ON上一動點(不與原點O重合),PM⊥x軸于M點.
(1)若P(a,a)為直線ON上在第一象限內的任意一點,求直線ON的解析式;
(2)連接PE、PF,若∠PFO+∠PEO=180°,在(1)的條件下,試問線段PE與PF之間是否存在一定的數(shù)量關系,并說明理由;
(3)當P在直線ON上的第一象限內任意運動時,在(1)和(2)的條件下,
OE+OFOM
是否為定值?若是,求出這個定值;若不是,說明理由.
分析:(1)用待定系數(shù)法求直線ON的解析式.
(2)過P點作y軸的垂線交y軸于G點,可證△PGF≌△PME,得到PE=PF.
(3)由(2)得OF=OG-GD=OM-ME,OE=OM+ME,則
OE+OF
OM
=2.
解答:解:(1)設直線ON的解析式為y=kx,P(a,a)代入得k=1,所以直線ON的解析式為y=x.

精英家教網(wǎng)(2)PE=PF.理由如下:
如圖,過P點作y軸的垂線交y軸于G點,則PG=PM,
又∵∠PFO+∠PEO=180,∴∠PFG=∠PEM,
∴直角△PGF≌直角△PME,所以PE=PF.

(3)
OE+OF
OM
為定值2.
理由如下:由直角△PGF≌直角△PME,得OM=OG,ME=GF,
所以OE+OF=OM+ME+OG-GF=OM+ME+OM-ME=2OM,
所以
OE+OF
OM
=2.
點評:熟練掌握用待定系數(shù)法求直線的解析式;掌握過角平分線上點向兩邊引垂線,得到垂線段相等;對證明三角形全等要熟練.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

18、如圖,在直角坐標系中,已知點A(-3,0),B(0,4),對△OAB連續(xù)作旋轉變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點的坐標為
(24,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標系中,點P的坐標為(3,4),將OP繞原點O逆時針旋轉90°得到線段OP′.
(1)在圖中畫出線段OP′;
(2)求P′的坐標和
PP′
的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標系中,O為原點.反比例函數(shù)y=
6
x
的圖象經(jīng)過第一象限的點A,點A的縱坐標是橫坐標的
3
2
倍.
(1)求點A的坐標;
(2)如果經(jīng)過點A的一次函數(shù)圖象與x軸的負半軸交于點B,AC⊥x軸于點C,若△ABC的面積為9,求這個一次函數(shù)的解析式.
(3)點D在反比例函數(shù)y=
6
x
的圖象上,且點D在直線AC的右側,作DE⊥x軸于點E,當△ABC與△CDE相似時,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標系中,△ABC的三個頂點的坐標分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個位似圖形△A1B1C1,△A2B2C2,同時滿足下列兩個條件:
(1)以原點O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標上相應字母)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標系中,已知點A(-4,0),B(0,3),對△OAB連續(xù)作旋轉變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6

(2)三角形(2013)的直角頂點的坐標是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習冊答案