【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小紅在斜坡下的點(diǎn)C處測得樓頂B的仰角為60°,在斜坡上的點(diǎn)D處測得樓頂B的仰角為45°,其中點(diǎn)A、C、E在同一直線上.
(1)求斜坡CD的高度DE;
(2)求大樓AB的高度(結(jié)果保留根號(hào))
【答案】(1)2米;(2)(6+)或(6-)米.
【解析】
試題分析:(1)在在Rt△DCE中,利用30°所對(duì)直角邊等于斜邊的一半,可求出DE=2米;(2)過點(diǎn)D作DF⊥AB于點(diǎn)F,則AF=2,根據(jù)三角函數(shù)可用BF表示BC、BD,然后可判斷△BCD是Rt△,進(jìn)而利用勾股定理可求得BF的長,AB的高度也可求.
試題解析:(1)在Rt△DCE中,∠DEC=90°,∠DCE=30°,∴DE=DC=2米;(2)過D作DF⊥AB,交AB于點(diǎn)F,則AF=DE=2米.∵∠BFD=90°,∠BDF=45°,∴∠BFD=45°,∴BF=DF.設(shè)BF=DF=x米,則AB=(x+2)米,在Rt△ABC中,∠BAC=90°,∠BCA=60°,∴sin∠BCA=,∴BC=AB÷sin∠BCA=(x+2)÷=米,在Rt△BDF中,∠BFD=90°,米,∵∠DCE=30°,∠ACB=60°,∴∠DCB=90°.∴ ,解得:x=4+或x=4﹣,則AB=(6+)米或(6﹣)米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】化簡2a﹣[3b﹣5a﹣(2a﹣7b)]的結(jié)果是( )
A. ﹣7a+10b B. 5a+4b C. ﹣a﹣4b D. 9a﹣10b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)到不在同一條直線上的三個(gè)點(diǎn)A,B,C的距離相等的點(diǎn)有( )
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,點(diǎn)O是AB中點(diǎn),連接OH,則OH= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD中,AB=AD,AB⊥AD,連接AC,過點(diǎn)A作AE⊥AC,且使AE=AC,連接BE,過A作AH⊥CD于H交BE于F.
(1)如圖1,當(dāng)E在CD的延長線上時(shí),求證:①△ABC≌△ADE;②BF=EF;
(2)如圖2,當(dāng)E不在CD的延長線上時(shí),BF=EF還成立嗎?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件中,最適合采用全面調(diào)查的是( )
A.對(duì)一鍋湯的味道進(jìn)行調(diào)查B.對(duì)某班全體學(xué)生出生日期的調(diào)查
C.對(duì)某批次燈泡使用壽命的調(diào)查D.對(duì)全國中學(xué)生每天閱讀時(shí)間的調(diào)查
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com