如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4.以斜邊AB的中點D為旋轉中心,把△ABC按逆時針方向旋轉α角(0°<α<120°),當點A的對應點與點C重合時,B,C兩點的對應點分別記為E,F(xiàn),EF與AB的交點為G,此時α等于    °,△DEG的面積為   
【答案】分析:根據(jù)直角三角形性質求出AC,∠A,根據(jù)旋轉性質求出DA=DC,得出等邊三角形ADC,求出∠EDG=60°和DC,求出ED長,求出∠DGE=90°,求出DG和EG,根據(jù)三角形的面積公式求出即可.
解答:解:∵∠ACB=90°,∠B=30°,
∴∠A=60°,AC=AB=2,
∵以斜邊AB的中點D為旋轉中心,點A的對應點與點C重合,
∴DA=DC,
∴∠A=∠ACD=60°,
∴△ADC是等邊三角形,
AC=AD=DC=2,∠ADC=60°=∠EDG,
∴DE=CE-CD=4-2=2,∠DGE=90°,
∵∠E=30°,
∴DG=DE=1,
由勾股定理得:GE=,
∴S△DEG=DG×GE=×1×=
故答案為:60,
點評:本題考查了等邊三角形的性質和判定,勾股定理,旋轉的性質,含30度角的直角三角形性質,三角形的面積等知識點的運用,關鍵是求出DG和EG的長,主要考查學生分析問題和解決問題的能力,題目綜合性比較強,難度適中.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•莆田質檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設點P的運動時間為t(s).
(1)當點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當點N落在AB邊上時,求t的值.
(3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設五邊形的面積為S(cm2),求S與t的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案