如圖,在△ABC中,點O在AB邊上,以O(shè)為圓心的圓經(jīng)過A,C兩點,交AB于點D,且2∠A+∠B=90°,
(1)求證:BC是⊙O的切線.
(2)若OA=6,且OD=BD,求AC的長.

(1)證明:連接OC,
=
∴∠COD=2∠A,
∵2∠A+∠B=90°,
∴∠COD+∠B=90°,
在△OCB中,∠OCB=90°,
∴BC是⊙O的切線;
(2)連接CD,
∵∠COB=2∠A,2∠A+∠B=90°,
∴∠B+∠COA=90°,
∵CD=BO,
∵OD=BD,
∴CD=AD,
∴∠A=30°
∴cos30°=,
∵AD=2AB=12,
∴AC=6
分析:(1)連接OC,由同弧所對的圓心角等于所對圓周角的2倍得到∠COD=2∠A,由2∠A與∠B之和為90度,得到∠COD與∠B互余,在三角形COB中,得到∠OCB為直角,即可確定出BC為圓O的切線;
(2)連接CD,可證明直角三角形ACD中∠A=30°,利用銳角三角函數(shù)即可求出AC的長.
點評:此題考查了切線的判定,特殊角的銳角三角函數(shù)以及圓周角定理,熟練掌握切線的判定方法是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案