如圖,△ABC中,∠C=90°,∠BAC的平分線交BC于D,且CD=15,AC=30,則AB的長(zhǎng)為________.

50
分析:作DE⊥AB,易得△ABC∽△DBE,則,設(shè)BD=x,BE=y,則,解得x=2y-15,在Rt△DBE中,BD2=DE2+BE2,即(2y-15)2=y2+152,求得y的值,即可求得AB.
解答:解:如圖,作DE⊥AB,
∴∠BED=90°,
∴∠BED=∠C=90°,
∵∠EBD=∠ABC,
∴△ABC∽△DBE,
,設(shè)BD=x,BE=y,

30y=152+15x,
x=2y-15,
在Rt△DBE中,BD2=DE2+BE2
即(2y-15)2=y2+152,
y(y-20)=0,
∴y=20,
AB=AE+BE=30+20=50.
故答案為:50.
點(diǎn)評(píng):此題考查角平分線的性質(zhì)、相似三角形的判定和性質(zhì),以及勾股定理,作輔助線是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案