已知y-2與x成反比例,當x=3時,y=1,則y與x的函數(shù)關系式為   
【答案】分析:根據(jù)反比例函數(shù)的定義設出表達式,再利用待定系數(shù)法解出系數(shù)則可.
解答:解:設y-2=,
當x=3時,y=1,
解得k=-3,
所以y-2=-,
y=-+2.
點評:本題考查了運用待定系數(shù)法求反比例函數(shù)的表達式,比較基本.
一般地,如果兩個變量x、y之間的關系可以表示成y=或寫成y=kx-1(k為常數(shù),k≠0)的形式,那么稱y是x的反比例函數(shù).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

為了預防流感,學校對教室進行“藥熏消毒”.已知藥物燃燒階段,室內每立方米空氣中的含藥量y(mg)與燃燒時間x(分鐘)成正比,燃燒后,y與x成反比(如圖所示),現(xiàn)測得藥物10分鐘燃燒完,此時教室內每立方米空氣含精英家教網(wǎng)藥量為16mg.根據(jù)以上信息解答下列問題:
(1)求藥物燃燒時以及藥物燃燒后y與x的函數(shù)關系式;
(2)當每立方米空氣中含藥量低于4mg時對人體無害,那么從消毒開始經(jīng)多長時間后學生才能進教室?
(3)當每立方米空氣中藥物含量不低于8mg且持續(xù)時間不低于25分鐘時消毒才有效,那么這次消毒效果如何?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知y=y1+y2,y1
x
成正比例,y2與x2成反比.當x=1時,y=-12;當x=4時,y=7.
(1)求y與x的函數(shù)關系式和x的取范圍;
(2)當x=
1
4
時,求y的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

為了預防“非典”,某學校對教室采用藥熏消毒法進行消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比例,藥物燃燒后y與x成反比例如圖.現(xiàn)測得藥物8分鐘燃畢,此時室內空氣中每立方米的含藥量為6毫克,請根據(jù)題中提供的信息,解答下列問題:
(1)藥物燃燒時,y關于x的函數(shù)關系式為
y=
3
4
x
y=
3
4
x
,自變量x的取值范圍是
0≤x≤8
0≤x≤8
;藥物燃燒后y關于x的函數(shù)關系式為
y=
48
x
(x>8)
y=
48
x
(x>8)

(2)研究表明,當空氣中每立方米的含藥量低于1.6毫克時學生方可進教室,那么從消毒開始,至少需要經(jīng)過
30
30
分鐘后,學生才能回到教室;
(3)研究表明,當空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病毒,那么此次消毒有效嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某學校對教室采用藥熏消毒法進行消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比,藥物燃燒完后,y與x成反比(如圖所示)現(xiàn)測得藥物8分鐘燃完,此時室內每立方米空氣中的含藥量為6毫克,請根據(jù)題中所提供的信息,解答下列問題
【小題1】藥物燃燒時,y關于x的函數(shù)關系式為            。
自變量x的取值范圍是            。藥物燃燒完后,         
y關于x的函數(shù)關系式為              
【小題2】研究表明,當空氣中每立方米的含藥量低于1.6毫克時,學生
方可進教室,那么從消毒開始,至少需要經(jīng)過       分鐘后,學生
才能進教室。
【小題3】研究表明,當空氣中每立方米的含藥量不低于3毫克且持續(xù)時間
不低于10分鐘時,才能有效地殺滅空氣中的病菌,那么此次消毒是否
有效,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年四川省成都市鐵路中學九年級(上)月考數(shù)學試卷(10月份)(解析版) 題型:填空題

為了預防“非典”,某學校對教室采用藥熏消毒法進行消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比例,藥物燃燒后y與x成反比例如圖.現(xiàn)測得藥物8分鐘燃畢,此時室內空氣中每立方米的含藥量為6毫克,請根據(jù)題中提供的信息,解答下列問題:
(1)藥物燃燒時,y關于x的函數(shù)關系式為    ,自變量x的取值范圍是    ;藥物燃燒后y關于x的函數(shù)關系式為   
(2)研究表明,當空氣中每立方米的含藥量低于1.6毫克時學生方可進教室,那么從消毒開始,至少需要經(jīng)過    分鐘后,學生才能回到教室;
(3)研究表明,當空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病毒,那么此次消毒有效嗎?為什么?

查看答案和解析>>

同步練習冊答案