(2013•玉林)如圖,在直角梯形ABCD中,AD∥BC,AD⊥DC,點(diǎn)A關(guān)于對(duì)角線BD的對(duì)稱點(diǎn)F剛好落在腰DC上,連接AF交BD于點(diǎn)E,AF的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)G,M,N分別是BG,DF的中點(diǎn).
(1)求證:四邊形EMCN是矩形;
(2)若AD=2,S梯形ABCD=
152
,求矩形EMCN的長(zhǎng)和寬.
分析:(1)根據(jù)軸對(duì)稱的性質(zhì)可得AD=DF,DE⊥AF,然后判斷出△ADF、△DEF是等腰直角三角形,再根據(jù)等腰直角三角形的性質(zhì)求出∠DAF=∠EDF=45°,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等求出∠BCE=45°,然后判斷出△BGE是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得EM⊥BC,EN⊥CD,再根據(jù)矩形的判定證明即可;
(2)判斷出△BCD是等腰直角三角形,然后根據(jù)梯形的面積求出CD的長(zhǎng),再根據(jù)等腰直角三角形的性質(zhì)求出DN,即可得解.
解答:(1)證明:∵點(diǎn)A、F關(guān)于BD對(duì)稱,
∴AD=DF,DE⊥AF,
又∵AD⊥DC,
∴△ADF、△DEF是等腰直角三角形,
∴∠DAF=∠EDF=45°,
∵AD∥BC,
∴∠G=∠GAD=45°,
∴△BGE是等腰直角三角形,
∵M(jìn),N分別是BG,DF的中點(diǎn),
∴EM⊥BC,EN⊥CD,
又∵AD∥BC,AD⊥DC,
∴BC⊥CD,
∴四邊形EMCN是矩形;

(2)解:由(1)可知,∠EDF=45°,BC⊥CD,
∴△BCD是等腰直角三角形,
∴BC=CD,
∴S梯形ABCD=
1
2
(AD+BC)•CD=
1
2
(2+CD)•CD=
15
2
,
即CD2+2CD-15=0,
解得CD=3,CD=-5(舍去),
∵△ADF、△DEF是等腰直角三角形,
∴DF=AD=2,
∵N是DF的中點(diǎn),
∴EN=DN=
1
2
DF=
1
2
×2=1,
∴CN=CD-DN=3-1=2,
∴矩形EMCN的長(zhǎng)和寬分別為2,1.
點(diǎn)評(píng):本題考查了直角梯形的性質(zhì),軸對(duì)稱的性質(zhì),矩形的判定,等腰直角三角形的判定與性質(zhì),熟練掌握軸對(duì)稱的性質(zhì)判斷出相關(guān)的等腰直角三角形是解題的關(guān)鍵,也是本題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•玉林)如圖是某手機(jī)店今年1-5月份音樂手機(jī)銷售額統(tǒng)計(jì)圖.根據(jù)圖中信息,可以判斷相鄰兩個(gè)月音樂手機(jī)銷售額變化最大的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•玉林)如圖,在給定的一張平行四邊形紙片上作一個(gè)菱形.甲、乙兩人的作法如下:
甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.
乙:分別作∠A,∠B的平分線AE,BF,分別交BC,AD于E,F(xiàn),連接EF,則四邊形ABEF是菱形.
根據(jù)兩人的作法可判斷( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•玉林)如圖,以△ABC的BC邊上一點(diǎn)O為圓心的圓,經(jīng)過A,B兩點(diǎn),且與BC邊交于點(diǎn)E,D為BE的下半圓弧的中點(diǎn),連接AD交BC于F,若AC=FC.
(1)求證:AC是⊙O的切線:
(2)若BF=8,DF=
40
,求⊙O的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•玉林)如圖,拋物線y=-(x-1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點(diǎn),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D,已知A(-1,0).
(1)求點(diǎn)B,C的坐標(biāo);
(2)判斷△CDB的形狀并說明理由;
(3)將△COB沿x軸向右平移t個(gè)單位長(zhǎng)度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案