【題目】如圖,圓O是Rt△ABC的外接圓,∠ACB=90°,∠A=25°,過點C作圓O的切線,交AB的延長線于點D,則∠D的度數(shù)是( )

A.25°
B.40°
C.50°
D.65°

【答案】B
【解析】解:連接OC,

∵圓O是Rt△ABC的外接圓,∠ACB=90°,

∴AB是直徑,

∵∠A=25°,

∴∠BOC=2∠A=50°,

∵CD是圓O的切線,

∴OC⊥CD,

∴∠D=90°﹣∠BOC=40°.

所以答案是:B.

【考點精析】本題主要考查了圓周角定理和切線的性質定理的相關知識點,需要掌握頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】基本事實:若ab=0,則a=0或b=0.一元二次方程x2-x-2=0可通過因式分解化為x-2)(x+1=0,由基本事實得x-2=0或x+1=0,即方程的解為x=2或x=-1.

1、試利用上述基本事實,解方程:2x2-x=0:

2、若x2+y2)(x2+y2-1-2=0,求x2+y2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于未知數(shù)為 x,y 的二元一次方程組,如果方程組的解 xy 滿足 ,我們就說方程組的解 x y 具有鄰好關系

(1) 方程組的解xy是否具有鄰好關系”? 說明你的理由;

(2) 若方程組的解xy具有鄰好關系,求m的值;

(3) 未知數(shù)為x,y的方程組,其中ax,y都是正整數(shù),該方程組的解xy是否具有鄰好關系”? 如果具有,請求出a的值及方程組的解;如果不具有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,點O為直線AB上一點,過點O作射線OC,使∠AOC=60°.將一把直角三角尺的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方,其中∠OMN=30°.

(1)將圖①中的三角尺繞點O順時針旋轉至圖②,使一邊OM在∠BOC的內部,且恰好平分∠BOC,則∠CON=________;

(2)將圖①中的三角尺繞點O按每秒10°的速度沿順時針方向旋轉一周,在旋轉的過程中,在第________秒時,邊MN恰好與射線OC平行;在第________秒時,直線ON恰好平分銳角∠AOC(直接寫出結果);

(3)將圖①中的三角尺繞點O順時針旋轉至圖③,使ON在∠AOC的內部,請?zhí)骄俊?/span>AOM與∠NOC之間的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】夏季來臨,天氣逐漸炎熱起來.某商店將某種碳酸飲料每瓶的價格上調了10%,將某種果汁飲料每瓶的價格下調了5%,已知調價前買這兩種飲料各一瓶共花費7元,調價后買上述碳酸飲料3瓶和果汁飲料2瓶共花費17.5元.

1)若設調價前每瓶碳酸飲料元,每瓶果汁飲料元,調價后每瓶碳酸飲料 元,每瓶果汁飲料 元(用含的代數(shù)式表示)

2)求這兩種飲料在調價前每瓶各多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明和小亮利用三張卡片做游戲,卡片上分別寫有A,B,B.這些卡片除字母外完全相同,從中隨機摸出一張,記下字母后放回,充分洗勻后,再從中摸出一張,如果兩次摸到卡片字母相同則小明勝,否則小亮勝,這個游戲對雙方公平嗎?請說明現(xiàn)由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某書店為了迎接“讀書節(jié)”制定了活動計劃,以下是活動計劃書的部分信息:

“讀書節(jié)”活動計劃書

書本類別

A類

B類

進價(單位:元)

18

12

備注

1、用不超過16800元購進A、B兩類圖書共1000本;
2、A類圖書不少于600本;


(1)陳經理查看計劃數(shù)時發(fā)現(xiàn):A類圖書的標價是B類圖書標價的1.5倍,若顧客用540元購買的圖書,能單獨購買A類圖書的數(shù)量恰好比單獨購買B類圖書的數(shù)量少10本,請求出A、B兩類圖書的標價;
(2)經市場調查后,陳經理發(fā)現(xiàn)他們高估了“讀書節(jié)”對圖書銷售的影響,便調整了銷售方案,A類圖書每本標價降低a元(0<a<5)銷售,B類圖書價格不變,那么書店應如何進貨才能獲得最大利潤?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形中,當?shù)走?/span>上的高由小到大變化時,平行四邊形的面積也隨之發(fā)生變化,我們得到如下數(shù)據:

底邊AB上的高xcm

2

3

4

5

平行四邊形ABCD的面積y(cm2)

12

18

24

30

1)在這個變化過程中,自變量、因變量分別是什么?

2之間的關系式可以表示為 ;

3)由表格中的數(shù)據可以發(fā)現(xiàn),當每增加時,如何變化?

4)若平行四邊形的面積為,此時底邊上的高為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=ax+b與反比例函數(shù) (x>0)的圖象交于A(2,4),B(4,n)兩點,與x軸,y軸分別交于C,D兩點.

(1)求m,n的值;
(2)求△AOB的面積;
(3)若線段CD上的點P到x軸,y軸的距離相等.求點P的坐標.

查看答案和解析>>

同步練習冊答案