【題目】已知非RtABC中,∠A=45°,高BD、CE所在的直線交于點(diǎn)H,畫出圖形并求出∠BHC的度數(shù).

【答案】135°45°

【解析】

試題分兩種情況進(jìn)行討論:①△ABC是銳角三角形時(shí),先根據(jù)高線的定義求出∠ADB=90°,∠BEC=90°,然后根據(jù)直角三角形兩銳角互余求出ABD,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式進(jìn)行計(jì)算即可得解;②ABC是鈍角三角形時(shí),根據(jù)直角三角形兩銳角互余求出BHC=∠A,從而得解.

試題解析:①如圖1,△ABC是銳角三角形時(shí),

∵BD、CE是△ABC的高線,

∴∠ADB=90°,∠BEC=90°,

在△ABD中,∵∠A=45°,

∴∠ABD=90°-45°=45°,

∴∠BHC=∠ABD+∠BEC=45°+90°=135°;

②△ABC是鈍角三角形時(shí),∵BD、CE是△ABC的高線,

∴∠A+∠ACE=90°,∠BHC+∠HCD=90°,

∵∠ACE=∠HCD(對(duì)頂角相等),

∴∠BHC=∠A=45°,

綜上所述,∠BHC的度數(shù)是135°或45.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A是反比例函數(shù)ym<0)位于第二象限的圖像上的一個(gè)動(dòng)點(diǎn),過點(diǎn)AACx

軸于點(diǎn)C;M為是線段AC的中點(diǎn),過點(diǎn)MAC的垂線,與反比例函數(shù)的圖像及y軸分別交于B、

D兩點(diǎn).順次連接A、B、C、D.設(shè)點(diǎn)A的橫坐標(biāo)為n

(1)求點(diǎn)B的坐標(biāo)(用含有mn的代數(shù)式表示);

(2)求證:四邊形ABCD是菱形;

(3)若△ABM的面積為2,當(dāng)四邊形ABCD是正方形時(shí),求直線AB的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課題學(xué)習(xí):我們知道二次函數(shù)的圖象是拋物線,它也可以這樣定義:如果一個(gè)動(dòng)點(diǎn)M(x,y)到定點(diǎn)A(0,m)(m>0)的距離與它到定直線y=﹣m的距離相等,那么動(dòng)點(diǎn)M形成的圖形就是拋物線y=ax2(a>0)的圖象,如圖所示.

(1)探究:當(dāng)x≠0時(shí),a與m有何數(shù)量關(guān)系?
(2)應(yīng)用:已知?jiǎng)狱c(diǎn)M(x,y)到定點(diǎn)A(0,4)的距離與到定直線y=﹣4的距離相等,請(qǐng)寫出動(dòng)點(diǎn)M形成的拋物線的解析式.
(3)拓展:根據(jù)拋物線的平移變換,拋物線y= (x﹣1)2+2的圖象可以看作到定點(diǎn)A( , )的距離與它到定直線y=的距離相等的動(dòng)點(diǎn)M(x,y)所形成的圖形.
(4)若點(diǎn)D的坐標(biāo)是(1,8),在(2)中求得的拋物線上是否存在點(diǎn)P,使得PA+PD最短?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C,且OC=OB.

(1)求此拋物線的解析式;
(2)若點(diǎn)E為第二象限拋物線上一動(dòng)點(diǎn),連接BE,CE,求四邊形BOCE面積的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo);
(3)點(diǎn)P在拋物線的對(duì)稱軸上,若線段PA繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好也落在此拋物線上,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=﹣ ,當(dāng)自變量的取值為﹣1<x<0或x≥2,函數(shù)值y的取值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明用尺規(guī)作圖作△ABCAC上的高BH,作法如下:

分別以點(diǎn)D,E為圓心,大于DE的長為半徑作弧,兩弧交于F;

作射線BF,交邊AC于點(diǎn)H

B為圓心,BK長為半徑作弧,交直線AC于點(diǎn)DE;

取一點(diǎn)K,使KBAC的兩側(cè);

所以,BH就是所求作的高. 其中順序正確的作圖步驟是( 。

A. ①②③④ B. ④③②① C. ②④③① D. ④③①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC是等邊三角形.

(1)如圖,點(diǎn)DAB邊上,點(diǎn)EAC邊上,BDCE,BECD交于點(diǎn)F試判斷BFCF的數(shù)量關(guān)系,并加以證明;

(2)點(diǎn)DAB邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)EAC邊上的一個(gè)動(dòng)點(diǎn),且BDCE,BECD交于點(diǎn)F.若△BFD是等腰三角形,求∠FBD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】DEF中,DE=DF,點(diǎn)BEF邊上,且∠EBD=60°,C是射線BD上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B重合,且BC≠BE),在射線BE上截取BA=BC,連接AC.

(1)當(dāng)點(diǎn)C在線段BD上時(shí),

①若點(diǎn)C與點(diǎn)D重合,請(qǐng)根據(jù)題意補(bǔ)全圖1,并直接寫出線段AEBF的數(shù)量關(guān)系為________;

②如圖2,若點(diǎn)C不與點(diǎn)D重合,請(qǐng)證明AE=BF+CD;

(2)當(dāng)點(diǎn)C在線段BD的延長線上時(shí),用等式表示線段AE,BF,CD之間的數(shù)量關(guān)系,不用證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y1=﹣ x+1與x軸交于點(diǎn)A,與直線y2=﹣ x交于點(diǎn)B.

(1)求△AOB的面積;
(2)求y1>y2時(shí)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案