分析 (1)根據(jù)兩角夾邊對應(yīng)相等的兩個(gè)三角形全等即可判定.
(2)由△ABE≌△ADP得∠APD=∠AEB,再由∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,可以證明∠BEP=∠PAE=90°由此即可證明.
解答 (1)證明:∵四邊形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∵AE⊥AP,
∴∠EAP=90°,
∴∠EAB=∠PAD,
在△ABE和△ADP中,
$\left\{\begin{array}{l}{AE=AP}\\{∠EAB=∠PAD}\\{AB=AD}\end{array}\right.$,
∴△ABE≌△ADP;
(2)證明:∵△ABE≌△ADP,
∴∠APD=∠AEB,
又∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,∠AEP=∠APE=45°
∴∠BEP=∠PAE=90°,
∴BE⊥DE;
點(diǎn)評 本題考查正方形性質(zhì)、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形,熟練應(yīng)用全等三角形性質(zhì),屬于中考?碱}型.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}+\sqrt{3}=\sqrt{5}$ | B. | $2+\sqrt{2}=2\sqrt{2}$ | C. | $3\sqrt{2}-\sqrt{2}=2\sqrt{2}$ | D. | $\frac{{\sqrt{12}+\sqrt{10}}}{2}=\sqrt{6}+\sqrt{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | -6(x-1)2 | B. | -6(x+1)2 | C. | -6x(x-2) | D. | -6x(x+2) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com