在數(shù)學(xué)中,為了簡(jiǎn)便,記
n
k=1
k=1+2+3+…+(n-1)+n.
1!=1,2!=2×1,3!=3×2×1,…,n!=n×(n-l)×(n-2)×…×3×2×1.
2011
k=1
k-
2012
k=1
k+
2012!
2011!
分析:首先搞清∑和!表示的運(yùn)算含義:記
n
k=1
k表示從1到n的n個(gè)數(shù)的和,n!表示從1到n的n個(gè)數(shù)的乘積,由此進(jìn)一步運(yùn)算即可.
解答:解:
2011
k=1
k-
2012
k=1
k+
2012!
2011!

=(1+2+3+…+2011)-(1+2+3+…+2001+2012)+
2012×2011×…×3×2×1
2011×2010×…×3×2×1

=-2012+2012
=0.
點(diǎn)評(píng):此題利用定義新運(yùn)算,來(lái)進(jìn)行有理數(shù)的混合運(yùn)算,注意運(yùn)算中的規(guī)定,正確代入即可求得結(jié)果.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)學(xué)中,為了簡(jiǎn)便,記:
n
k=1
k
=1+2+3+…+(n-1)+n,1!=1,2!=2×1,3!=3×2×1…n!=n×(n-1)(n-2)…×3×2×1,則
2006
k=1
k-
2007
k=1
k+
2007!
2006!
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)學(xué)中,為了簡(jiǎn)便,記
n
k=1
k=1+2+3+…+(n-1)+n
,
10
k=1
((x+k))
=(x+1)+(x+2)+…+(x+10).
(1)請(qǐng)你用以上記法表示:1+2+3+…+2008=
 
;
(2)化簡(jiǎn):
10
k=1
(x-k)
;
(3)化簡(jiǎn):
2008
k=1
(x-k)2-
2007
k=1
(x-k)2-20082

(4)化簡(jiǎn):
3
k=1
[(x-k)(x-k-1)]

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)學(xué)中,為了簡(jiǎn)便,記
n
k=1
k=1+2+3+…+(n-1)+n
.1!=1,2!=2×1,3!=3×2×1,…,n!=n×(n-1)×(n-2)×…×3×2×1.則
2010
k=1
k-
2011
k=1
k+
2011!
2010!
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)學(xué)中,為了簡(jiǎn)便,記
n
k=1
k=1+2+3+…+(n-1)+n
.1!=1,2!=2×1,3!=3×2×1,…,n!=n×(n-1)×(n-2)×…×3×2×1,則
2009
k=1
k-
2010
k=1
k+
2010!
2009!
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)學(xué)中,為了簡(jiǎn)便,記
n
k=1
k
=1+2+3+…+(n-1)+n,
n
k=1
(x+k)
=(x+1)+(x+2)+…+(x+n).
(1)請(qǐng)你用以上記法表示:1+2+3+…+2011=
2011
k=1
k
2011
k=1
k

(2)化簡(jiǎn):
n
k=1
(x-k)
;
(3)化簡(jiǎn):
3
k=1
[(x-k)(x-k-1)].

查看答案和解析>>

同步練習(xí)冊(cè)答案