【題目】(1)有理數(shù)在數(shù)軸上的位置如圖所示,且,化簡:

 

(2).已知在數(shù)軸上的位置如圖所示,化簡:

【答案】(1)b﹣a;(2)﹣a+c-b+1.

【解析】

1由數(shù)軸可知bc0a0,a+b=0再根據(jù)有理數(shù)的運算法則,求出絕對值里的代數(shù)式的正負性最后根據(jù)絕對值的性質化簡

2先根據(jù)數(shù)軸上各點的位置確定2a、a+c1b的符號,再根據(jù)絕對值的性質去掉絕對值符號合并同類項即可

1)由數(shù)軸,得bc0a0,又|a|=|b|,∴ca0cb0,a+b=0

|ca|+|cb|+|a+b|=ca+bc=ba

2)∵ac在原點的左側,∴a0c0,∴2a0,a+c0

0b1,∴1b0,∴原式=2a+a+c+1b=2a+a+c+1b=a+c-b+1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB,C的對邊分別記為,由下列條件不能判定ABC為直角三角形的是( ).

AA+B=C

BA∶∠B∶∠C =123

C

D=346

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,拋物線y=﹣x2+bx+c與x軸、y軸分別相交于點A(﹣1,0)、B(0,3)兩點,其頂點為D.
(1)求這條拋物線的解析式;
(2)若拋物線與x軸的另一個交點為E. 求△ODE的面積;拋物線的對稱軸上是否存在點P使得△PAB的周長最短.若存在請求出P點的坐標,若不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】古希臘著名的畢達哥拉斯學派把1,3,6,10這樣的數(shù)稱為三角形數(shù),而把149,16這樣的數(shù)稱為正方形數(shù).從圖中可以發(fā)現(xiàn),任何一個大于1正方形數(shù)都可以看作兩個相鄰三角形數(shù)之和.下列等式中,符合這一規(guī)律的是( 。

A. 361521 B. 25916 C. 13310 D. 491831

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某村計劃對總長為1800m的道路進行改造,安排甲、乙兩個工程隊完成.已知甲隊每天能完成的道路長度是乙隊每天能完成的2倍,并且在獨立完成長為400m的道路時,甲隊比乙隊少用4天.

(1)求甲、乙兩工程隊每天能完成道路的長度分別是多少m?

(2)若村委每天需付給甲隊的道路改造費用為0.4萬元,乙隊為0.25萬元,要使這次的道路改造費用不超過8萬元,至少應安排甲隊工作多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:問題:如圖1,在菱形ABCD和菱形BEFG中,∠ABC=∠BEF=60°,點A,B,E在同一條直線上,P是線段DF的中點,連接PG,PC,探究PGPC的位置關系。

(1)請你寫出上面問題中線段PGPC的位置關系,并說明理由;

(2)將圖1中的菱形BEFG繞點B順時針旋轉,使菱形BEFG的對角線BF恰好與菱形ABCD的邊AB在同一條直線上,原問題中的其他條件不變(如圖2).你在(1)中得到的結論是否發(fā)生變化?寫出你的猜想并加以證明,

(3)將菱形ABCD和菱形BEFG均改成正方形,如圖3,PDF的中點,此時PGPC的位置關系和數(shù)量關系分別是什么?直接寫出答案。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是邊長為4個等邊三角形,D為AB邊的中點,以CD為直徑畫圓,則圖中陰影部分的面積為(結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AE⊥BC于點E,延長BC至點F使CF=BE,連結AF,DE,DF.

(1)求證:四邊形AEFD是矩形;

(2)若AB=6,DE=8,BF=10,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),拋物線y=ax2+bx+c與x軸交于A(x1,0)、B(x2,0)兩點(x1<0<x2),與y軸交于點C(0,-3),若拋物線的對稱軸為直線x=1,且tan∠OAC=3.

(1)求拋物線的函數(shù)解析式;
(2)若點D是拋物線BC段上的動點,且點D到直線BC距離為 ,求點D的坐標
(3)如圖(2),若直線y=mx+n經過點A,交y軸于點E(0, - ),點P是直線AE下方拋物線上一點,過點P作x軸的垂線交直線AE于點M,點N在線段AM延長線上,且PM=PN,是否存在點P,使△PMN的周長有最大值?若存在,求出點P的坐標及△PMN的周長的最大值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案