如圖,△ABC中,任意一點P(a,b)經平移后對應點P1(a-2,b+3),將△ABC作同樣的平移得到△A1B1C1
(1)求A1,B1,C1的坐標;
(2)指出這一平移的平移方向和平移距離.
分析:(1)讓原來A、B、C各點的橫坐標減去2,縱坐標加上3,即為A1、B1、C1的坐標;
(2)根據(jù)平移的性質即可確定平移的方向和平移的距離.
解答:解:(1)∵原來點A的坐標為(1,1),B的坐標為(-1,-1),C的坐標為(4,-2),點P(a,b)經平移后對應點P1(a-2,b+3),
∴A1(-1,4);B1(-3,2);C1(2,1);

(2)將△ABC平移得到△A1B1C1,平移的方向是由A到A1的方向,
平移的距離為線段AA1的長度,AA1=
(-1-1)2+(5-2)2
=
13
,即平移的距離為
13
個單位長度.
點評:本題考查了坐標與圖形變化-平移,圖形上對應點的平移規(guī)律就是圖形上所有點的平移規(guī)律;同時考查了平移方向與平移距離的確定,難度適中.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

16、如圖,△ABC中,AB=AC,∠A=40°,P為△ABC內任一點,且∠PBC=∠PCA,則∠BPC=
110°
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料:
如圖,△ABC中,AB=AC,P為底邊BC上任意一點,點P到兩腰的距離分別為r1,r2,腰上的高為h,連接AP,則S△ABP+S△ACP=S△ABC,即:
1
2
AB•r1+
1
2
AC•r2=
1
2
AB•h
,∴r1+r2=h(定值).
(1)類比與推理
如果把“等腰三角形”改成“等邊三角形”,那么P的位置可以由“在底邊上任一點”放寬為“在三角形內任一點”,即:已知等邊△ABC內任意一點P到各邊的距離分別為r1,r2,r3,等邊△ABC的高為h,試證明r1+r2+r3=h(定值).
(2)理解與應用
△ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC內部是否存在一點O,點O到各邊的距離相等?
 
(填“存在”或“不存在”),若存在,請直接寫出這個距離r的值,r=
 
.若不存在,請說明理由.精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料:
如圖,△ABC中,AB=AC,P為底邊BC上任意一點,點P到兩腰的距離分別為r1,r2,腰上的高為h,連接AP,則S△ARP+S△ACP=S△ABC,即:
1
2
AB•r1+
1
2
AC•r2=
1
2
AC•h,∴r1+r2=h(定值).
(1)理解與應用:
如圖,在邊長為3的正方形ABCD中,點E為對角線BD上的一點,且BE=BC,F(xiàn)為CE上一點,F(xiàn)M⊥BC于M,F(xiàn)N⊥BD于N,試利用上述結論求出FM+FN的長.
(2)類比與推理:
如果把“等腰三角形”改成“等邊三角形”,那么P的位置可以由“在底邊上任一點”放寬為“在三角形內任一點”,即:
已知等邊△ABC內任意一點P到各邊的距離分別為r1,r2,r3,等邊△ABC的高為h,試證明r1+r2+r3=h(定值).
(3)拓展與延伸:
若正n邊形A1A2…An,內部任意一點P到各邊的距離為r1r2…rn,請問r1+r2+…+rn是否為定值?如果是,請合理猜測出這個定值.
精英家教網精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀理解題:
已知:如圖,△ABC中,AB=AC,P是底邊BC上的任一點(不與B、C重合),CD⊥AB于D,PE⊥AB于E,PF⊥AC于F.
求證:CD=PE+PF.
在解答這個問題時,小明與小穎的思路方法分別如下:
小明的思路方法是:過點P作PG⊥CD于G(如圖1),則可證得四邊形PEDG是矩形,也可證得△PCG≌△CPF,從而得到PE=DG,PF=CG,因此得CD=PE+PF.
小穎的思路方法是:連接PA(如圖2),則S△ABC=S△PAB+S△PAC,再由三角形的面積公式便可證得CD=PE+PF.
由此得到結論:等腰三角形底邊上任意一點到兩腰的距離之和等于一腰上的高.
閱讀上面的材料,然后解答下面的問題:
(1)針對小明或小穎的思路方法,請選擇倆人中的一種方法把證明過程補充完整
(2)如圖3,梯形ABCD中,AD∥BC,∠ABC=60°,AB=AD=CD=2,E是BC上任意一點,EM⊥BD于M,EN⊥AC于N,試利用上述結論
求EM+EN的值.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2013•德城區(qū)二模)閱讀材料:如圖,△ABC中,AB=AC,P為底邊BC上任意一點,點P到兩腰的距離分別為r1,r2,腰上的高為h,連接AP,則S△ABP+S△ACP=S△ABC,即:
1
2
AB•r1+
1
2
AC•r2=
1
2
AB•h,∴r1+r2=h
(1)理解與應用
如果把“等腰三角形”改成“等邊三角形”,那么P的位置可以由“在底邊上任一點”放寬為“在    三角形內任一點”,即:已知邊長為2的等邊△ABC內任意一點P到各邊的距離分別為r1,r2,r3,試證明:r1+r2+r3=
3

(2)類比與推理
邊長為2的正方形內任意一點到各邊的距離的和等于
4
4
;
(3)拓展與延伸
若邊長為2的正n邊形A1A2…An內部任意一點P到各邊的距離為r1,r2,…rn,請問r1+r2+…rn是否為定值(用含n的式子表示),如果是,請合理猜測出這個定值.

查看答案和解析>>

同步練習冊答案