如果解關(guān)于x的分式方程數(shù)學(xué)公式出現(xiàn)了增根,那么m=________.

-3
分析:分式方程的增根是分式方程轉(zhuǎn)化為整式方程的根,且使分式方程的分母為0的未知數(shù)的值.
解答:由分式方程去分母,
整理得(m+2)x=-4m-15,
由分母可知,分式方程的增根可能是3或-4,
當(dāng)x=3時(shí),(m+2)×3=-4m-15,解得m=-3,
當(dāng)x=-4時(shí),(m+2)×(-4)=-4m-15,此方程無解.
故答案為:-3.
點(diǎn)評(píng):本題考查了分式方程的增根.增根問題可按如下步驟進(jìn)行:
①讓最簡(jiǎn)公分母為0確定增根;
②化分式方程為整式方程;
③把增根代入整式方程即可求得相關(guān)字母的值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

換元法是把一個(gè)比較復(fù)雜的數(shù)學(xué)式子的一部分看成是一個(gè)整體,用另一個(gè)字母代替這一部分(即換元).換元法的好處是能使式子得到簡(jiǎn)化,各項(xiàng)的關(guān)系容易看清,便于解決問題.此方法充分體現(xiàn)了整體的數(shù)學(xué)思想.例如:用換元法解分式方程
2x-1
x
-
x
2x-1
=2
時(shí),如果設(shè)
2x-1
x
=y
,并將原方程化為關(guān)于y的整式方程,那么這個(gè)整式方程是y2-2y-1=0,然后在解出y1和y2,再將y1和y2替換成
2x-1
x
=y1
2x-1
x
=y2
,即可解出x1和x2.請(qǐng)用換元法解方程:x2-
12
x2-2x
=2x-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

換元法是把一個(gè)比較復(fù)雜的數(shù)學(xué)式子的一部分看成是一個(gè)整體,用另一個(gè)字母代替這一部分(即換元).換元法的好處是能使式子得到簡(jiǎn)化,各項(xiàng)的關(guān)系容易看清,便于解決問題.此方法充分體現(xiàn)了整體的數(shù)學(xué)思想.例如:用換元法解分式方程數(shù)學(xué)公式時(shí),如果設(shè)數(shù)學(xué)公式,并將原方程化為關(guān)于y的整式方程,那么這個(gè)整式方程是y2-2y-1=0,然后在解出y1和y2,再將y1和y2替換成數(shù)學(xué)公式數(shù)學(xué)公式,即可解出x1和x2.請(qǐng)用換元法解方程:數(shù)學(xué)公式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年福建省漳州市漳浦縣深土中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

換元法是把一個(gè)比較復(fù)雜的數(shù)學(xué)式子的一部分看成是一個(gè)整體,用另一個(gè)字母代替這一部分(即換元).換元法的好處是能使式子得到簡(jiǎn)化,各項(xiàng)的關(guān)系容易看清,便于解決問題.此方法充分體現(xiàn)了整體的數(shù)學(xué)思想.例如:用換元法解分式方程時(shí),如果設(shè),并將原方程化為關(guān)于y的整式方程,那么這個(gè)整式方程是y2-2y-1=0,然后在解出y1和y2,再將y1和y2替換成,即可解出x1和x2.請(qǐng)用換元法解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年云南省玉溪市易門縣六街中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

換元法是把一個(gè)比較復(fù)雜的數(shù)學(xué)式子的一部分看成是一個(gè)整體,用另一個(gè)字母代替這一部分(即換元).換元法的好處是能使式子得到簡(jiǎn)化,各項(xiàng)的關(guān)系容易看清,便于解決問題.此方法充分體現(xiàn)了整體的數(shù)學(xué)思想.例如:用換元法解分式方程時(shí),如果設(shè),并將原方程化為關(guān)于y的整式方程,那么這個(gè)整式方程是y2-2y-1=0,然后在解出y1和y2,再將y1和y2替換成,即可解出x1和x2.請(qǐng)用換元法解方程:

查看答案和解析>>

同步練習(xí)冊(cè)答案