小明同學受《烏鴉喝水》故事的啟發(fā),利用量筒和完全相同的若干個小球進行了如下操作(量筒是圓柱體,高為49cm,桶內(nèi)水高30cm(如圖1)):

若將三個小球放入量筒中,水高如圖2所示,則放入小球后量筒中水面的高度y(cm)與小球個數(shù)x(個)之間的一次函數(shù)表達式為______(不要求寫出自變量的取值范圍);要使量筒有水溢出(如圖3),則至少要放入的小球個數(shù)為______.
由圖可知,放入3個小球后水面上升高度為36-30=6cm,
所以,加入一個小球水面上升的高度為6÷3=2cm,
故放入小球后量筒中水面的高度y(cm)與小球個數(shù)x(個)之間的一次函數(shù)表達式為y=2x+30;
要使量筒有水溢出,則y=2x+30≥49,
解得x≥9.5,
∵小球的個數(shù)是正整數(shù),
∴x最小取10,
即至少要放入的小球個數(shù)為10個.
故答案為:y=2x+30;10個.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

百舸競渡,激情飛揚.為紀念愛國詩人屈原,邵陽市在資江河隆重舉行了“海洋明珠杯”龍舟賽.圖(十二)是甲、乙兩支龍舟隊在比賽時的路程s(米)與時間t(分鐘)之間的函數(shù)關(guān)系圖象,請你根據(jù)圖象回答下列問題:
(1)1.8分鐘時,哪支龍舟隊處于領(lǐng)先地位?
(2)在這次龍舟比賽中,哪支龍舟隊先到達終點?
(3)比賽開始多少時間后,先到達終點的龍舟隊就開始領(lǐng)先?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如示意圖,在平面直角坐標系中,O為坐標原點,點A是x軸的負半軸上一點,以AO為直徑的⊙P經(jīng)過點C(-8,4).點E(m,n)在⊙P上,且-10<m≤-5,n<0,CE與x軸相交于點M,過C點作直線CN交x軸于點N,交⊙P于點F,使得△CMN是以MN為底的等腰三角形,經(jīng)過E、F兩點的直線與x軸相交于點Q.
(1)求出點A的坐標;
(2)當m=-5時,求圖象經(jīng)過E、Q兩點的一次函數(shù)的解析式;
(3)當點E(m,n)在⊙P上運動時,猜想∠OQE的大小會發(fā)生怎樣的變化?請對你的猜想加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知一次函數(shù)o=k著+b(k≠七)的圖象經(jīng)過A(圖,-w)和B(-2,4);
(w)求這個函數(shù)的解析式;
(2)求該函數(shù)圖象與o軸的交點C和與著軸的交點D的坐標;
(圖)求△OCD的面積(O為坐標原點).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,直線y=-x+2與x軸、y軸分別相交于點C、D,一個含45°角的直角三角板的銳角頂點A在線段CD上滑動,滑動過程中三角板的斜邊始終經(jīng)過坐標原點,∠A的另一邊與x軸的正半軸相交于點B.
(1)試探索△AOB能否為等腰三角形?若能,請求出點B的坐標;若不能,請說明理由.
(2)如圖2,若將題中“直線y=-x+2”、“∠A的另一邊與x軸的正半軸相交于點B”分別改為:“直線y=-x+t(t>0)”、“∠A的另一邊與x軸的負半軸相交于點B”(如圖2),其他條件保持不變,請?zhí)剿鳎?)中的問題(只考慮點A在線段CD的延長線上且不包括點D時的情況)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,直線l:y=-2x-8分別與x軸,y軸相交于A,B兩點,點P(0,k)是y軸的負半軸上的一個動點,以P為圓心,3為半徑作⊙P.
(1)連接PA,若PA=PB,試判斷⊙P與x軸的位置關(guān)系,并說明理由;
(2)當k為何值時,⊙P與直線l相切;
(3)當k為何值時,以⊙P與直線l的兩個交點和圓心P為頂點的三角形是正三角形?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線l的解析式為y=-x+4,它與x軸、y軸分別相交于A、B兩點,平行于直線l的直線m從原點O出發(fā),沿x軸的正方向以每秒1個單位長度的速度運動,它與x軸、y軸分別相交于M、N兩點,運動時間為t秒(0<t≤4)
(1)求A、B兩點的坐標;
(2)用含t的代數(shù)式表示△MON的面積S1;
(3)以MN為對角線作矩形OMPN,記△MPN和△OAB重合部分的面積為S2;
①當2<t≤4時,試探究S2與之間的函數(shù)關(guān)系;
②在直線m的運動過程中,當t為何值時,S2為△OAB的面積的
5
16
?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

探究與應(yīng)用:在學習幾何時,我們可以通過分離和構(gòu)造基本圖形,將幾何“模塊”化.例如在相似三角形中,K字形是非常重要的基本圖形,可以建立如下的“模塊”(如圖①):
(1)請就圖①證明上述“模塊”的合理性.已知:∠A=∠D=∠BCE=90°,求證:△ABC△DCE;
(2)請直接利用上述“模塊”的結(jié)論解決下面兩個問題:
①如圖②,已知點A(-2,1),點B在直線y=-2x+3上運動,若∠AOB=90°,求此時點B的坐標;
②如圖③,過點A(-2,1)作x軸與y軸的平行線,交直線y=-2x+3于點C、D,求點A關(guān)于直線CD的對稱點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若一次函數(shù)y=kx-4的圖象經(jīng)過點(-2,4),則k等于(  )
A.-4B.4C.-2D.2

查看答案和解析>>

同步練習冊答案