已知:如圖,O為坐標(biāo)原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA的中點,點P在BC上以每秒1個單位的速度由C向B運動。
(1) 求梯形ODPC的面積S與時間t的函數(shù)關(guān)系式。
(2) t為何值時,四邊形PODB是平行四邊形?
(3) 在線段PB上是否存在一點Q,使得ODQP為菱形。若存在求t值,若不存在,說明理由。
(4) 當(dāng)△OPD為等腰三角形時,求點P的坐標(biāo)。
(1)由題意儀,根據(jù)梯形的面積公式,得
s==2t+10
(2)∵四邊形PODB是平行四邊形,
∴PB=OD=5,
∴PC=5,
∴t=5
(3)∵ODQP為菱形,
∴OD=OP=PQ=5,
∴在Rt△OPC中,由勾股定理得:
PC=3
∴t=3
(4)當(dāng)P1O=OD=5時,由勾股定理可以求得P1C=3,
P2O=P2D時,作P2E⊥OA,
∴OE=ED=2.5;
當(dāng)P3D=OD=5時,作DF⊥BC,由勾股定理,得P3F=3,
∴P3C=2;
當(dāng)P4D=OD=5時,作P4G⊥OA,由勾股定理,得DG=3,
∴OG=8.
∴P1(2,4),P2(2.5,4),P3(3,4),P4(8,4)
【解析】(1)根據(jù)梯形的面積公式就可以表示出S與t的函數(shù)關(guān)系式.
(2)根據(jù)平行四邊形的性質(zhì)就可以知道PB=5,可以求出PC=5,從而可以求出t的值.
(3)要使ODQP為菱形,可以得出PO=5,由三角形的勾股定理就可以求出CP的值而求出t的值.
(4)當(dāng)P1O=OD=5或P2O=P2D或P3D=OD=5或P4D=OD=5時分別作P2E⊥OA于E,DF⊥BC于F,P4G⊥OA于G,利用勾股定理P1C,OE,P3F,DG的值,就可以求出P的坐標(biāo).
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com