作業(yè)寶如圖,直線y=-數(shù)學(xué)公式x+8與x軸、y軸分別相交于點A、B,設(shè)M是OB上一點,若將△ABM沿AM折疊,使點B恰好落在x軸上的點B′處.求:
(1)點B′的坐標(biāo);
(2)直線AM所對應(yīng)的函數(shù)關(guān)系式.

解:(1)y=-x+8,
令x=0,則y=8,
令y=0,則x=6,
∴A(6,0),B(0,8),
∴OA=6,OB=8  AB=10,
∵A B'=AB=10,
∴O B'=10-6=4,
∴B'的坐標(biāo)為:(-4,0).

(2)設(shè)OM=m,則B'M=BM=8-m,
在Rt△OMB'中,m2+42=(8-m)2,
解得:m=3,
∴M的坐標(biāo)為:(0,3),
設(shè)直線AM的解析式為y=kx+b,
,
解得:,
故直線AM的解析式為:y=-x+3.
分析:(1)先確定點A、點B的坐標(biāo),再由AB=AB',可得AB'的長度,求出OB'的長度,即可得出點B'的坐標(biāo);
(2)設(shè)OM=m,則B'M=BM=8-m,在Rt△OMB'中利用勾股定理求出m的值,得出M的坐標(biāo)后,利用待定系數(shù)法可求出AM所對應(yīng)的函數(shù)解析式.
點評:本題考查了一次函數(shù)的綜合,涉及了待定系數(shù)法求函數(shù)解析式、勾股定理及翻折變換的性質(zhì),解答本題的關(guān)鍵是數(shù)形結(jié)合思想的應(yīng)用,難度一般.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線:y1=kx+b與拋物線:y2=x2+bx+c交于點A(-2,4),B(8,2).精英家教網(wǎng)
(1)求出直線解析式;
(2)求出使y1>y2的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,直線a、b都與直線c相交,給出下列條件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判斷a∥b的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、如圖,直線AB、CD相交于點E,EF⊥AB于E,若∠CEF=59°,則∠AED的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線y=6-x交x軸、y軸于A、B兩點,P是反比例函數(shù)y=
4
x
(x>0)
圖象上位于直線下方的一點,過點P作x軸的垂線,垂足為點M,交AB于點E,過點P作y軸的垂線,垂足為點N,交AB于點F.則AF•BE=(  )
A、8
B、6
C、4
D、6
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,直線a∥c,b∥c,直線d與直線a、b、c相交,已知∠1=60°,求∠2、∠3的度數(shù)(可在圖中用數(shù)字表示角).

查看答案和解析>>

同步練習(xí)冊答案