【題目】如圖,△ABC中,ADBC邊上的高線,BE是一條角平分線,它們相交于點P , 已知∠EPD=125°,求∠BAD的度數(shù).

【答案】解答:∵ADBC邊上的高線,∠EPD=125°,
∴∠CBE=∠EPD-∠ADB=125°-90°=35°,
BE是一條角平分線,
∴∠ABD=2∠CBE=2×35°=70°,
RtABD中,∠BAD=90°-∠ABD=90°-70°=20°.
故答案為:20°.
【解析】根據(jù)三角形的一個外角等于與它不相鄰的兩個內角的和求出∠CBE的度數(shù),再根據(jù)角平分線的定義求出∠ABC的度數(shù),然后利用直角三角形的兩銳角互余列式計算即可得解.
【考點精析】解答此題的關鍵在于理解解直角三角形的相關知識,掌握解直角三角形的依據(jù):①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列一段文字,然后回答下列問題:

已知平面內兩點M(x1,y1)、N(x2,y2),則這兩點間的距離可用下列公式計算

MN=.

例如:已知P(3,1)、Q(1,-2),則這兩點的距離PQ=.特別地,如果兩點M(x1,y1)、N(x2,y2)所在的直線與坐標軸重合或平行于坐標軸或垂直于坐標軸,那么這兩點間的距離公式可簡化為MN=|x1-x2||y1-y2|.

(1)已知A(1,2)、B(-2,-3),試求A、B兩點間的距離;

(2)已知A、B在平行于y軸的同一條直線上,點A的縱坐標為5,點B的縱坐標為-1,試求A、B兩點間的距離;

(3)已知△ABC的頂點坐標分別為A(0,4)、B(-1,2)、C(4,2),你能判定△ABC的形狀嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某水渠的橫斷面是等腰梯形,已知其斜坡ADBC的坡度為1:0.6,現(xiàn)測得放水前的水面寬EF為1.2米,當水閘放水后,水渠內水面寬GH為2.1米求放水后水面上升的高度是(  )

A.0.55
B.0.8
C.0.6
D.0.75

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰三角形中,兩腰和底的長分別是10和13,求三角形的三個內角的度數(shù)(精確到1′)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E.

(1)當直線MN繞點C旋轉到圖1的位置時,求證:DE=AD+BE;

(2)當直線MN繞點C旋轉到圖2的位置時,求證:DE=AD-BE;

(3)當直線MN繞點C旋轉到圖3的位置時,試問DE、AD、BE具有怎樣的等量關系?請直接寫出這個等量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D,E分別是邊BC,AC上的點,且BD=EC,∠ADE=∠B.

(1)求證:AD=DE;

(2)若∠ADE=,求ADB的度數(shù)(用含x的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在梯形ABCD中,ABDC , EF是梯形的中位線,ACEFG , BDEFH , 以下說法錯誤的是( 。
A.ABEF
B.AB+DC=2EF
C.四邊形AEFB和四邊形ABCD相似
D.EG=FH

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠C=Rt∠,AC=8cm,BC=6cm,若動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒2cm,設運動的時間為t秒。

(1)t為何值時,CP把△ABC的周長分成相等的兩部分。

(2)t為何值時,CP把△ABC的面積分成相等的兩部分,并求出此時CP的長;

(3)t為何值時,△BCP為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合題。
(1)計算: ﹣( 1+(2﹣ 0
(2)解方程:x2﹣4x+1=0.

查看答案和解析>>

同步練習冊答案