如圖,在梯形ABCD中,AB=AD=CD,∠DBC=25°,則∠BDC=________.

105°
分析:首先由等腰梯形的性質(zhì),求得∠ABC=∠C與∠ADB=∠DBC=25°;又由AD=AB,求得∠ABD=∠ADB=25°,由三角形的內(nèi)角和為180°,即可求得∠BDC的度數(shù).
解答:∵在梯形ABCD中,AB=CD,
∴∠ABC=∠C,
∵AD∥BC,
∴∠ADB=∠DBC=25°,
∵AD=AB,
∴∠ABD=∠ADB=25°,
∴∠C=∠ABC=∠ABD+∠DBC=25°+25°=50°,
∵∠C+∠DBC+∠BDC=180°,
∴∠BDC=105°.
故答案為:105°.
點(diǎn)評(píng):此題考查了等腰三角形的性質(zhì)與等腰梯形的性質(zhì),以及三角形的內(nèi)角和為180°等知識(shí).題目難度不大,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對(duì)角線AC、BD交于點(diǎn)O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對(duì)角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點(diǎn)E,這個(gè)梯形的面積為21cm2,周長(zhǎng)為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習(xí)冊(cè)答案