精英家教網(wǎng)如圖,在梯形ABCD中,∠DCB=90°,AB∥CD,AB=25,BC=24,將該梯形折疊,點A恰好與點D重合,BE為折痕,那么AD的長度為
 
分析:作DF⊥AB,垂足為F,則四邊形DCBF是矩形,CD=BF,DF=BC=24,由折疊的性質(zhì)知,BD=AB=25,利用勾股定理即可求出.
解答:精英家教網(wǎng)解:過點D作DF⊥AB,垂足為F,
根據(jù)題意,BF=CD=
252-242
=7,
AF=AB-BF=25-7=18,
在Rt△ADF中,由勾股定理得,AD=
AF2+DF2
=
182+242
=30.
點評:本題利用了:①折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等;②矩形的性質(zhì)和勾股定理求解
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對角線AC、BD交于點O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點E,這個梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習冊答案