【題目】在平面直角坐標系中,平行四邊形ABOC如圖放置,點A、C的坐標分別是(0,4)、(-1,0),將此平行四邊形繞點O順時針旋轉90°,得到平行四邊形A′B′OC′.
(1)若拋物線過點C、A、A′,求此拋物線的解析式;
(2)點M是第一象限內拋物線上的一動點,問:當點M在何處時,△AMA′的面積最大?最大面積是多少?并求出此時M的坐標;
(3)若P為拋物線上的一動點,N為x軸上的一動點,點Q坐標為(1,0),當P、N、B、Q 構成平行四邊形時,求點P的坐標,當這個平行四邊形為矩形時,求點N的坐標.
【答案】(1)y=-x2+3x+4;(2)△AMA′的面積最大S△AMA′=8,M(2,6);(3)當P1(0,4),P2(3,4),P3(,-4),P4(,-4)時,P、N、B、Q構成平行四邊形;當這個平行四邊形為矩形時,N1(0,0),N2(3,0).
【解析】
試題分析:(1)先由OA′=OA得到點A′的坐標,再用點C、A、A′的坐標即可求此拋物線的解析式;(2)連接AA′, 過點M 作MN⊥x軸,交AA′于點N,把△AMA′分割為△AMN和△A′MN, △AMA′的面積=△AMA′的面積+△AMN的面積=OA′MN,設點M的橫坐標為x,借助拋物線的解析式和AA′的解析式,建立MN的長關于x的函數(shù)關系式,再據(jù)此建立△AMA′的面積關于x的二次函數(shù)關系式,再求△AMA′面積的最大值以及此時M的坐標;(3)在P、N、B、Q 這四個點中,B、Q 這兩個點是固定點,因此可以考慮將BQ作為邊、將BQ作為對角線分別構造符合題意的圖形,再求解.
試題解析:(1)∵平行四邊形ABOC繞點O順時針旋轉90°,得到平行四邊形A′B′OC′,點A的坐標是(0,4),∴點A′的坐標為(4,0),點B的坐標為(1,4).
∵拋物線過點C,A,A′,設拋物線的函數(shù)解析式為y=ax2+bx+c(a≠0),可得:
. 解得:.∴拋物線的函數(shù)解析式為y=-x2+3x+4.
(2)連接AA′,設直線AA′的函數(shù)解析式為y=kx+b,可得
.解得:.
∴直線AA'的函數(shù)解析式是y=-x+4.
設M(x,-x2+3x+4),
S△AMA′=×4×[-x2+3x+4一(一x+4)]=一2x2+8x=一2(x-2)2+8.
∴x=2時,△AMA′的面積最大S△AMA′=8.
∴M(2,6).
(3)設P點的坐標為(x,-x2+3x+4),當P、N、B、Q構成平行四邊形時,
①當BQ為邊時,PN∥BQ且PN=BQ,
∵BQ=4,∴一x2+3x+4=±4.
當一x2+3x+4=4時,x1=0,x2=3,即P1(0,4),P2(3,4);
當一x2+3x+4=一4時,x3=,x4=,即P3(,-4),P4(,-4);
②當BQ為對角線時,PB∥x軸,即P1(0,4),P2(3,4);
當這個平行四邊形為矩形時,即Pl(0,4),P2(3,4)時,N1(0,0),N2(3,0).
綜上所述,當P1(0,4),P2(3,4),P3(,-4),P4(,-4)時,P、N、B、Q構成平行四邊形;當這個平行四邊形為矩形時,N1(0,0),N2(3,0).
科目:初中數(shù)學 來源: 題型:
【題目】某班預開展社團活動,對全班42名學生開展“你最喜歡的社團”問卷調查(每人只選一項),并將結果制成如下統(tǒng)計表,則學生最喜歡的項目是( 。
社團名稱 | 籃球 | 足球 | 唱歌 | 器樂 |
人數(shù)(人) | 11 | x | 9 | 8 |
A. 籃球B. 足球C. 唱歌D. 器樂
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知開口向下的拋物線y1=ax2﹣2ax+1過點A(m,1),與y軸交于點C,頂點為B,將拋物線y1繞點C旋轉180°后得到拋物線y2,點A,B的對應點分別為點D,E.
(1)直接寫出點A,C,D的坐標;
(2)當四邊形ABCD是矩形時,求a的值及拋物線y2的解析式;
(3)在(2)的條件下,連接DC,線段DC上的動點P從點D出發(fā),以每秒1個單位長度的速度運動到點C停止,在點P運動的過程中,過點P作直線l⊥x軸,將矩形ABDE沿直線l折疊,設矩形折疊后相互重合部分面積為S平方單位,點P的運動時間為t秒,求S與t的函數(shù)關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列事件中,屬于必然事件的是( )
A.明天我市下雨
B.拋一枚硬幣,正面朝下
C.購買一張福利彩票中獎了
D.擲一枚骰子,向上一面的數(shù)字一定大于零
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于一組數(shù)據(jù):x1,x2,x3,…,x10,若去掉一個最大值和一個最小值,則下列統(tǒng)計量一定不會發(fā)生變化的是( 。
A.平均數(shù)B.中位數(shù)C.眾數(shù)D.方差
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=(x-3)-1可以由拋物線y=x+1平移得到,則下列平移方法正確的是( )
A.先向左平移3個單位,再向上平移2個單位
B.先向左平移3個單位,再向下平移2個單位
C.先向右平移3個單位,再向上平移2個單位
D.先向右平移3個單位,再向下平移2個單位
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com