圓的半徑為13,兩弦ABCD,AB=24,CD=10,則兩弦的距離是( 。
A.7或17B.17C.12D.7
過O作OE⊥AB、OF⊥CD,E、F為垂足,
根據垂徑定理AE=
1
2
AB=
1
2
×24=12,
CF=
1
2
CD=
1
2
×10=5,
在Rt△AEO中,OE=
OA2-AE2
=
132-122
=5,
在Rt△CFO中,OF=
OC2-CF2
=
132-52
=12,
①當兩弦在圓心同側時,距離=OF-OE=12-5=7,
②當兩弦在圓心異側時,距離=OF+0E=12+5=17.
距離為7或17.
故選A.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在⊙O內有折線OABC,點B、C在圓上,點A在⊙O內,其中OA=4cm,BC=10cm,∠A=∠B=60°,則AB的長為( 。
A.5cmB.6cmC.7cmD.8cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在⊙O中,弦AB=24,弦CD=10,圓心到AB的距離為5,則圓心到CD的距離為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,⊙O的弦AB、AC的夾角為50°,MN分別為弧AB和弧AC的中點,OM、ON分別交AB、AC于點E、F,則∠MON的度數(shù)為(  )
A.110°B.120°C.130°D.100°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,圓內接四邊形ABCD的兩邊AB、DC的延長線相交于點E,DF過圓心O交AB于點F,AB=BE,連接AC,且OD=3,AF=FB=
5
,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,圓內兩條弦互相垂直,其中一條AB被分成3和4兩段,另一條CD被分成2和6兩段,求此圓的直徑.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,將半徑為8的⊙O沿AB折疊,弧AB恰好經過與AB垂直的半徑OC的中點D,則折痕AB長為(  )
A.2
15
B.4
15
C.8D.10

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

用工件槽(如圖1)可以檢測一種鐵球的大小是否符合要求,已知工件槽的兩個底角均為90°,尺寸如圖(單位:cm).將形狀規(guī)則的鐵球放入槽內時,若同時具有圖1所示的A、B、E三個接觸點,該球的大小就符合要求.圖2是過球心O及A、B、E三點的截面示意圖,求這種鐵球的直徑.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

畫圖操作:
圖①、圖②均為7×6的正方形網格,點A、B、C在格點上.
(1)在圖①中確定格點D,并畫出以A、B、C、D為頂點的四邊形,使其為軸對稱圖形.(畫一個即可)
(2)在圖②中確定格點E,并畫出以A、B、C、E為頂點的四邊形,使其為中心對稱圖形.(畫一個即可)
(3)在如圖所示的方格紙中,每個小方格都是邊長為1個單位的正方形,△ABC的三個頂點都在格點上(每個小方格的頂點叫格點).畫出△ABC繞點O逆時針旋轉90°后的△A′B′C′.

查看答案和解析>>

同步練習冊答案