【題目】如圖,DE是⊙O的直徑,弦AB⊥CD,垂足為C,若AB=6,CE=1,則OC= , CD=

【答案】4;9
【解析】解:連接OA, ∵直徑DE⊥AB,且AB=6
∴AC=BC=3,
設圓O的半徑OA的長為x,則OE=OD=x
∵CE=1,
∴OC=x﹣1,
在Rt△AOC中,根據(jù)勾股定理得:
x2﹣(x﹣1)2=32 , 化簡得:x2﹣x2+2x﹣1=9,
即2x=10,
解得:x=5
所以OE=5,則OC=OE﹣CE=5﹣1=4,CD=OD+OC=9.
所以答案是:4;9

【考點精析】解答此題的關鍵在于理解勾股定理的概念的相關知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對垂徑定理的理解,了解垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】將△ABC繞點A按逆時針方向旋轉θ度,并使各邊長變?yōu)樵瓉淼膎倍,得△AB′C′,如圖①所示,∠BAB′=θ, = = =n,我們將這種變換記為[θ,n].

(1)如圖①,對△ABC作變換[60°, ]得到△AB′C′,則SAB'C:SABC=;直線BC與直線B′C′所夾的銳角為度;

(2)如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對△ABC作變換[θ,n]得到△AB′C′,使點B、C、C′在同一直線上,且四邊形ABB′C′為矩形,求θ和n的值;

(3)如圖③,△ABC中,AB=AC,∠BAC=36°,BC=1,對△ABC作變換[θ,n]得到△AB′C′,使點B、C、B′在同一直線上,且四邊形ABB′C′為平行四邊形,求θ和n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖,關于該二次函數(shù),下列說法錯誤的是(
A.函數(shù)有最小值
B.對稱軸是直線x=
C.當x< ,y隨x的增大而減小
D.當﹣1<x<2時,y>0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF,連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.
(1)請判斷:FG與CE的數(shù)量關系是 , 位置關系是;
(2)如圖2,若點E、F分別是CB、BA延長線上的點,其它條件不變,(1)中結論是否仍然成立?請出判斷判斷并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖.已知二次函數(shù)y=﹣x2+bx+3的圖象與x軸的一個交點為A(4,0),與y軸交于點B.

(1)求此二次函數(shù)關系式和點B的坐標;
(2)在x軸的正半軸上是否存在點P.使得△PAB是以AB為底邊的等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖1,圖形①滿足AD=AB,MD=MB,∠A=72°,∠M=144°.圖形②與圖形①恰好拼成一個菱形(如圖2).記AB的長度為a,BM的長度為b.
(1)圖形①中∠B=°,圖形②中∠E=°;
(2)小明有兩種紙片各若干張,其中一種紙片的形狀及大小與圖形①相同,這種紙片稱為“風箏一號”;另一種紙片的形狀及大小與圖形②相同,這種紙片稱為“飛鏢一號”. ①小明僅用“風箏一號”紙片拼成一個邊長為b的正十邊形,
需要這種紙片張;
②小明若用若干張“風箏一號”紙片和“飛鏢一號”紙片拼成一個“大風箏”(如圖3),其中∠P=72°,∠Q=144°,且PI=PJ=a+b,IQ=JQ.請你在圖3中畫出拼接線并保留畫圖痕跡.(本題中均為無重疊、無縫隙拼接)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,直線y1=2x﹣2與坐標軸交于A、B兩點,與雙曲線y2=(x>0)交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,則以下結論:
①SADB=SADC;
②當0<x<3時,y1<y2;
③如圖,當x=3時,EF=;
④當x>0時,y1隨x的增大而增大,y2隨x的增大而減小.
其中正確結論的個數(shù)是( 。

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種商品的進價為40元/件,以獲利不低于25%的價格銷售時,商品的銷售單價y(元/件)與銷售數(shù)量x(件)(x是正整數(shù))之間的關系如下表:

x(件)

5

10

15

20

y(元/件)

75

70

65

60


(1)由題意知商品的最低銷售單價是___元,當銷售單價不低于最低銷售單價時,y是x的一次函數(shù).求出y與x的函數(shù)關系式及x的取值范圍;
(2)在(1)的條件下,當銷售單價為多少元時,所獲銷售利潤最大,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線l⊥AB于點B,點C在AB上,且AC:CB=2:1,點M是直線l上的動點,作點B關于直線CM的對稱點B′,直線AB′與直線CM相交于點P,連接PB.

(1)如圖2,若點P與點M重合,則∠PAB= , 線段PA與PB的比值為

(2)如圖3,若點P與點M不重合,設過P,B,C三點的圓與直線AP相交于D,連接CD,求證:①CD=CB′;②PA=2PB

(3)如圖4,若AC=2,BC=1,則滿足條件PA=2PB的點都在一個確定的圓上,在以下小題中選做一題:
①如果你能發(fā)現(xiàn)這個確定的圓的圓心和半徑,那么不必寫出發(fā)現(xiàn)過程,只要證明這個圓上的任意一點Q,都滿足QA=2QB;
②如果你不能發(fā)現(xiàn)這個確定的圓的圓心和半徑,那么請取出幾個特殊位置的P點,如點P在直線AB上,點P與點M重合等進行探究,求這個圓的半徑.

查看答案和解析>>

同步練習冊答案