一座拱型橋,橋下水面寬度AB是20米,拱高CD是4米.若水面上升3米至EF,則水面寬度EF是多少?

1.若把它看作是拋物線的一部分,在坐標系中(如圖1)可設拋物線的表達式為

請你填空:a=        ,c=         ,EF=             米.

2.若把它看作是圓的一部分,則可構造圖形(如圖2)計算如下:

設圓的半徑是r米,在Rt△OCB中,易知,r=14.5

同理,當水面上升3米至EF,在Rt△OGF中可計算出GF=      米,即水面寬度EF=    米.

 

 

 

【答案】

 

1.,4,10

2.,

 【解析】略

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

一座拱型橋,橋下水面寬度AB是20米,拱高CD是4米.若水面上升3米至EF,則水面寬度EF是多少?
(1)若把它看作是拋物線的一部分,在坐標系中(如圖1)可設拋物線的表達式為y=ax2+c.請你填空:
a=
 
,c=
 
,EF=
 
米.
(2)若把它看作是圓的一部分,則可構造圖形(如圖2)計算如下:
設圓的半徑是r米,在Rt△OCB中,易知r2=(r-4)2+102,r=14.5
同理,當水面上升3米至EF,在Rt△OGF中可計算出GF=
 
,即水面寬度EF=
 
米.
(3)請估計(2)中EF與(1)中你計算出的EF的差的近似值(誤差小于0.1米).精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源:第3章《圓》中考題集(17):3.1 圓(解析版) 題型:解答題

一座拱型橋,橋下水面寬度AB是20米,拱高CD是4米.若水面上升3米至EF,則水面寬度EF是多少?
(1)若把它看作是拋物線的一部分,在坐標系中(如圖1)可設拋物線的表達式為y=ax2+c.請你填空:
a=______,c=______,EF=______米.
(2)若把它看作是圓的一部分,則可構造圖形(如圖2)計算如下:
設圓的半徑是r米,在Rt△OCB中,易知r2=(r-4)2+102,r=14.5
同理,當水面上升3米至EF,在Rt△OGF中可計算出GF=______

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《圓》(12)(解析版) 題型:解答題

(2005•佛山)一座拱型橋,橋下水面寬度AB是20米,拱高CD是4米.若水面上升3米至EF,則水面寬度EF是多少?
(1)若把它看作是拋物線的一部分,在坐標系中(如圖1)可設拋物線的表達式為y=ax2+c.請你填空:
a=______,c=______,EF=______米.
(2)若把它看作是圓的一部分,則可構造圖形(如圖2)計算如下:
設圓的半徑是r米,在Rt△OCB中,易知r2=(r-4)2+102,r=14.5
同理,當水面上升3米至EF,在Rt△OGF中可計算出GF=______

查看答案和解析>>

科目:初中數(shù)學 來源:2005年廣東省佛山市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2005•佛山)一座拱型橋,橋下水面寬度AB是20米,拱高CD是4米.若水面上升3米至EF,則水面寬度EF是多少?
(1)若把它看作是拋物線的一部分,在坐標系中(如圖1)可設拋物線的表達式為y=ax2+c.請你填空:
a=______,c=______,EF=______米.
(2)若把它看作是圓的一部分,則可構造圖形(如圖2)計算如下:
設圓的半徑是r米,在Rt△OCB中,易知r2=(r-4)2+102,r=14.5
同理,當水面上升3米至EF,在Rt△OGF中可計算出GF=______

查看答案和解析>>

同步練習冊答案