如圖,在⊙O中,若半徑OC與弦AB互相平分,且AB=6cm,則OC=________cm.


分析:半徑OC與AB弦互相平分的意思它們的交點(diǎn)是共同的中點(diǎn).根據(jù)垂徑定理得它們互相垂直,這樣連接OB構(gòu)造直角三角形,利用勾股定理,構(gòu)造方程就可以求出OC.
解答:解:連接OB,
∵半徑OC與AB弦互相平分,∴OC⊥AB于D,D為AB中點(diǎn),也是OC中點(diǎn),
∴DB=AB=3cm,
設(shè)OB=R,則OD=R,
在直角三角形ODB中,OB2=BD2+OD2,∴R2=32+(R)2,
∴R=2cm.
點(diǎn)評(píng):主要利用了垂徑定理和勾股定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(在下面的(I)(II)兩題中選做一題,若兩題都做,按第(I)題評(píng)分)
(I)如圖,在△ABC中,AB=4,BC=3,∠B=90°,點(diǎn)D在AB上運(yùn)動(dòng),但與A、B不重合,過(guò)B、C、D三點(diǎn)的圓交AC于E,連接DE.
(1)設(shè)AD=x,CE=y,求y與x之間的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(2)當(dāng)AD長(zhǎng)為關(guān)于x的方程2x2+(4m+1)x+2m=0的一個(gè)整數(shù)根時(shí),求m的值.

(II)如圖,在直角坐標(biāo)系xOy中,以點(diǎn)A(0,-3)為圓心作圓與x軸相切,⊙B與⊙A外切干點(diǎn)P,B點(diǎn)在x軸正半軸精英家教網(wǎng)上,過(guò)P點(diǎn)作兩圓的公切線(xiàn)DP交y軸于D,交x軸于C,
(1)設(shè)⊙A的半徑為r1,⊙B的半徑為r2,且r2=
23
r1,求公切線(xiàn)DP的長(zhǎng)及直線(xiàn)DP的函數(shù)解析式,
(2)若⊙A的位置、大小不變,點(diǎn)B在X軸正半軸上移動(dòng),⊙B與⊙A始終外切.過(guò)D作⊙B的切線(xiàn)DE,E為切點(diǎn).當(dāng)DE=4時(shí),B點(diǎn)在什么位置?從解答中能發(fā)現(xiàn)什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,∠ABC=90°,BC邊在x軸正半軸上,中線(xiàn)BD的反向延長(zhǎng)線(xiàn)交y軸負(fù)半軸于點(diǎn)E.雙曲線(xiàn)y=
k
x
一條分支經(jīng)過(guò)點(diǎn)A,若S△BEC=4,則k等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•浙江一模)如圖,在△AOC中,AC=OC,O是坐標(biāo)原點(diǎn),點(diǎn)C在x軸上,點(diǎn)A坐標(biāo)是(1,3),則點(diǎn)C的坐標(biāo)是
(5,0)
(5,0)
.若A點(diǎn)在雙曲線(xiàn)y=
k
x
(x>0)上,AC與雙曲線(xiàn)交于點(diǎn)B,點(diǎn)E是線(xiàn)段OA上一點(diǎn)(不與O,A重合),設(shè)點(diǎn)D(m,0)是x軸正半軸上的一個(gè)動(dòng)點(diǎn),且滿(mǎn)足∠BED=∠AOC,當(dāng)線(xiàn)段OA上符合條件的點(diǎn)E有且僅有2個(gè)時(shí),m的取值范圍是
0<m<
2
3
0<m<
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2002•甘肅)(在下面的(I)(II)兩題中選做一題,若兩題都做,按第(I)題評(píng)分)
(I)如圖,在△ABC中,AB=4,BC=3,∠B=90°,點(diǎn)D在AB上運(yùn)動(dòng),但與A、B不重合,過(guò)B、C、D三點(diǎn)的圓交AC于E,連接DE.
(1)設(shè)AD=x,CE=y,求y與x之間的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(2)當(dāng)AD長(zhǎng)為關(guān)于x的方程2x2+(4m+1)x+2m=0的一個(gè)整數(shù)根時(shí),求m的值.

(II)如圖,在直角坐標(biāo)系xOy中,以點(diǎn)A(0,-3)為圓心作圓與x軸相切,⊙B與⊙A外切干點(diǎn)P,B點(diǎn)在x軸正半軸上,過(guò)P點(diǎn)作兩圓的公切線(xiàn)DP交y軸于D,交x軸于C,
(1)設(shè)⊙A的半徑為r1,⊙B的半徑為r2,且r2=r1,求公切線(xiàn)DP的長(zhǎng)及直線(xiàn)DP的函數(shù)解析式,
(2)若⊙A的位置、大小不變,點(diǎn)B在X軸正半軸上移動(dòng),⊙B與⊙A始終外切.過(guò)D作⊙B的切線(xiàn)DE,E為切點(diǎn).當(dāng)DE=4時(shí),B點(diǎn)在什么位置?從解答中能發(fā)現(xiàn)什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《一元二次方程》(07)(解析版) 題型:解答題

(2002•甘肅)(在下面的(I)(II)兩題中選做一題,若兩題都做,按第(I)題評(píng)分)
(I)如圖,在△ABC中,AB=4,BC=3,∠B=90°,點(diǎn)D在AB上運(yùn)動(dòng),但與A、B不重合,過(guò)B、C、D三點(diǎn)的圓交AC于E,連接DE.
(1)設(shè)AD=x,CE=y,求y與x之間的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(2)當(dāng)AD長(zhǎng)為關(guān)于x的方程2x2+(4m+1)x+2m=0的一個(gè)整數(shù)根時(shí),求m的值.

(II)如圖,在直角坐標(biāo)系xOy中,以點(diǎn)A(0,-3)為圓心作圓與x軸相切,⊙B與⊙A外切干點(diǎn)P,B點(diǎn)在x軸正半軸上,過(guò)P點(diǎn)作兩圓的公切線(xiàn)DP交y軸于D,交x軸于C,
(1)設(shè)⊙A的半徑為r1,⊙B的半徑為r2,且r2=r1,求公切線(xiàn)DP的長(zhǎng)及直線(xiàn)DP的函數(shù)解析式,
(2)若⊙A的位置、大小不變,點(diǎn)B在X軸正半軸上移動(dòng),⊙B與⊙A始終外切.過(guò)D作⊙B的切線(xiàn)DE,E為切點(diǎn).當(dāng)DE=4時(shí),B點(diǎn)在什么位置?從解答中能發(fā)現(xiàn)什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案