如圖,汽車在東西向的公路l上行駛,途中A,B,C,D四個十字路口都有紅綠燈.AB之間的距離為800米,BC為1000米,CD為1400米,且l上各路口的紅綠燈設(shè)置為:同時亮紅燈或同時亮綠燈,每次紅(綠)燈亮的時間相同,紅燈亮的時間與綠燈亮的時間也相同.若綠燈剛亮?xí)r,甲汽車從A路口以每小時30千米的速度沿l向東行駛,同時乙汽車從D路口以相同的速度沿l向西行駛,這兩輛汽車通過四個路口時都沒有遇到紅燈,則每次綠燈亮的時間可能設(shè)置為( 。
A. 50秒 B. 45秒 C. 40秒 D. 35秒
D
解:∵甲汽車從A路口以每小時30千米的速度沿l向東行駛,同時乙汽車從D路口以相同的速度沿l向西行駛,
∴兩車的速度為:=(m/s),
∵AB之間的距離為800米,BC為1000米,CD為1400米,
∴分別通過AB,BC,CD所用的時間為:=96(s),=120(s),=168(s),
∵這兩輛汽車通過四個路口時都沒有遇到紅燈,
∴當(dāng)每次綠燈亮的時間為50s時,∵=1,∴甲車到達(dá)B路口時遇到紅燈,故A選項錯誤;
∴當(dāng)每次綠燈亮的時間為45s時,∵=3,∴乙車到達(dá)C路口時遇到紅燈,故B選項錯誤;
∴當(dāng)每次綠燈亮的時間為40s時,∵=5,∴甲車到達(dá)C路口時遇到紅燈,故C選項錯誤;
∴當(dāng)每次綠燈亮的時間為35s時,∵=2,=6,=10,=4,=8,
∴這兩輛汽車通過四個路口時都沒有遇到紅燈,故D選項正確;
則每次綠燈亮的時間可能設(shè)置為:35秒.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,Rt△ABO的頂點(diǎn)O與原點(diǎn)重合,頂點(diǎn)B在x軸上,∠ABO=90°,OA與反比例函數(shù)y=的圖象交于點(diǎn)D,且OD=2AD,過點(diǎn)D作x軸的垂線交x軸于點(diǎn)C.若S四邊形ABCD=10,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
為增強(qiáng)居民節(jié)約用電意識,某市對居民用電實(shí)行“階梯收費(fèi)”,具體收費(fèi)標(biāo)準(zhǔn)見表:
一戶居民一個月用電量的范圍 電費(fèi)價格(單位:元/千瓦時)
不超過160千瓦時的部分 x
超過160千瓦時的部分 x+0.15
某居民五月份用電190千瓦時,繳納電費(fèi)90元.
(1)求x和超出部分電費(fèi)單價;
(2)若該戶居民六月份所繳電費(fèi)不低于75元且不超過84元,求該戶居民六月份的用電量范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
一個不透明的袋子中有2個白球,3個黃球和1個紅球,這些球除顏色不同外其他完全相同,則從袋子中隨機(jī)摸出一個球是白球的概率為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,邊長為n的正方形OABC的邊OA,OC在坐標(biāo)軸上,點(diǎn)A1,A2…An﹣1為OA的n等分點(diǎn),點(diǎn)B1,B2…Bn﹣1為CB的n等分點(diǎn),連結(jié)A1B1,A2B2,…An﹣1Bn﹣1,分別交曲線y=(x>0)于點(diǎn)C1,C2,…,Cn﹣1.若C15B15=16C15A15,則n的值為 .(n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
九(1)班同學(xué)在上學(xué)期的社會實(shí)踐活動中,對學(xué)校旁邊的山坡護(hù)墻和旗桿進(jìn)行了測量.
(1)如圖1,第一小組用一根木條CD斜靠在護(hù)墻上,使得DB與CB的長度相等,如果測量得到∠CDB=38°,求護(hù)墻與地面的傾斜角α的度數(shù).
(2)如圖2,第二小組用皮尺量的EF為16米(E為護(hù)墻上的端點(diǎn)),EF的中點(diǎn)離地面FB的高度為1.9米,請你求出E點(diǎn)離地面FB的高度.
(3)如圖3,第三小組利用第一、第二小組的結(jié)果,來測量護(hù)墻上旗桿的高度,在點(diǎn)P測得旗桿頂端A的仰角為45°,向前走4米到達(dá)Q點(diǎn),測得A的仰角為60°,求旗桿AE的高度(精確到0.1米).
備用數(shù)據(jù):tan60°=1.732,tan30°=0.577,=1.732,=1.414.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知過原點(diǎn)O的兩直線與圓心為M(0,4),半徑為2的圓相切,切點(diǎn)分別為P、Q,PQ交y軸于點(diǎn)K,拋物線經(jīng)過P、Q兩點(diǎn),頂點(diǎn)為N(0,6),且與x軸交于A、B兩點(diǎn).
(1)求點(diǎn)P的坐標(biāo);
(2)求拋物線解析式;
(3)在直線y=nx+m中,當(dāng)n=0,m≠0時,y=m是平行于x軸的直線,設(shè)直線y=m與拋物線相交于點(diǎn)C、D,當(dāng)該直線與⊙M相切時,求點(diǎn)A、B、C、D圍成的多邊形的面積(結(jié)果保留根號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com