已知△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,點(diǎn)M是CE的中點(diǎn),連結(jié)BM。
(1)如圖1,點(diǎn)D在AB上,連結(jié)DM,并延長(zhǎng)DM交BC于點(diǎn)N,請(qǐng)?zhí)骄康贸鯞D與BM的數(shù)量關(guān)系為_______。
|
(2)如圖2,點(diǎn)D不在AB上,(1)中的結(jié)論還成立嗎?如果成立,請(qǐng)證明;如果不成立,請(qǐng)說明理由。
(1) -------2分
(2) 結(jié)論成立。 證明:過點(diǎn)C作CF∥ED,
與DM的延長(zhǎng)線交于點(diǎn)F,證得△MDE≌△MFC,
∴DM=FM,DE=FC,
∴AD=ED=FC,
作AN⊥EC于點(diǎn)N,
由已知∠ADE=90°,∠ABC=90°,
可證得∠1=∠2,∠3=∠4,
∵CF∥ED, ∴∠2=∠FCM,
∴∠BCF=∠4+∠FCM=∠3+∠2=∠BAD,∴△BCF≌△BAD,
∴BF=BD,∠5=∠6, ∴∠DBF=∠5+∠ABF=∠6+∠ABF=∠ABC=90°,
∴△DBF是等腰直角三角形, ∵點(diǎn)M是DF的中點(diǎn),
則△BMD是等腰直角三角形,∴BD=BM.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com