17.如圖,?ABCD中,對(duì)角線AC與BD相交于O,EF是過點(diǎn)O的任一直線交AD于點(diǎn)E,交BC于點(diǎn)F,猜想OE和OF的數(shù)量關(guān)系,并說明理由.

分析 結(jié)論:OE=OF,欲證明OE=OF,只要證明△AOE≌△COF即可.

解答 解:結(jié)論:OE=OF.
理由∵四邊形ABCD是平行四邊形,
∴OA=OC,AD∥BC,
∴∠OAE=∠OCF,
在△AOE和△COF中,
$\left\{\begin{array}{l}{∠OAE=∠OCF}\\{∠AOE=∠COF}\\{AO=OC}\end{array}\right.$,
∴△AOE≌△COF,
∴OE=OF.

點(diǎn)評(píng) 本題考查平行四邊形的性質(zhì)、全等三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是靈活應(yīng)用這些知識(shí)解決問題,屬于中考常考題型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.先化簡(jiǎn),再求值:x(2x-y)-(x+y)(x-y)+(x-y)2,其中x2+y2=5,xy=-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

8.實(shí)數(shù)a、b在數(shù)軸上的位置如圖所示,則化簡(jiǎn)|a+b|+|b-a|=-2a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

5.已知方程組$\left\{\begin{array}{l}ax-by=4\\ ax+by=2\end{array}\right.$的解為$\left\{\begin{array}{l}x=1\\ y=2\end{array}\right.$,則3a-2b的值為( 。
A.8B.10C.-10D.-8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.如圖,如果∠1=∠3,可得AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

2.若單項(xiàng)式$\frac{3}{8}$x5m+2n+2y3與-$\frac{2}{3}$x6y3m-2n-1的和仍是一個(gè)單項(xiàng)式,則m+n=$\frac{1}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

9.25的平方根是±5,$\sqrt{64}$的立方根的相反數(shù)是-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

6.不等式x-1<2x+1的解集是x>-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

7.已知點(diǎn)(-1,y1)、(2,y2)、(π,y3)在雙曲線y=$\frac{{k}^{2}+1}{x}$上,則y1、y2、y3的大小關(guān)系y2>y3>y1

查看答案和解析>>

同步練習(xí)冊(cè)答案